Globally accessible variables in Matlab (something like #define in C, not 'global') - matlab

I need to make a few constants accessible to my whole program (including classes). In C, I would put some #defines into a header file, and include it where I need the variables. Unfortunately, I do not see a way to do this in Matlab. Variables defined as global are not visible in classes.
So how can I do this?
globVar = someValue; // define globVar somewhere, somehow
classdef MyClass
// want to access globVar here
end
(I'm aware that global variables are bad design in many cases, but here they would be useful: It's about storing a list of commands of a communication protocoll.)

Will a class containing constant properties work in your case?
Here is example:
classdef Constants
properties (Constant)
pi_ = pi ;
golden_ = (1 + sqrt(5)) / 2 ;
end
end
You can access pi_ and golden_ anywhere in matlab code like this:
Constants.pi_
Constants.golden_

Related

define help for variable in Matlab

In Matlab, it is easy to generate "help" for a function, as follows.
function out = foo()
% helpful information about foo
end
When we execute help foo, we get "helpful information about foo".
However, suppose we would like to define help for a variable, probably as a definition. How could we do such a thing? It would be nice if we could do something like
x = 3; % m ... position
help x
and get "m ... position". However, I don't believe such functionality exists.
The only reasonable way I see around this is to define every variable as a struct with keys value and description.
x.value = 3;
x.description = 'm/s ... position';
This requires we define every variable as a struct, which is kind of annoying and, I worry (should I?), unperformant (it's simulation code and these variables are accessed repeatedly).
Is there another solution I'm not considering? Should I be worried about making every variable a struct?
Your code should be self-documenting. Instead of variable name x, use position.
Furthermore, all variables should be local, so you can easily look for its definition (with comment) within the function you are editing.
Variables declared further away (with larger scope within the function) should have longer, more self-explanatory names than variables with a smaller scope (e.g. use within a short loop.
There are only two three cases where variables are declared outside the function’s scope:
Class properties. You can actually document these.
In a script, you have access to variables that already existed before the script started. A good reason not to use scripts or depend on the base namespace in larger projects.
Global variables. You should never use global variables for many reasons. Just don’t.

Matlab defining class functions in an elegant way for OOP

I am trying to implement a small example function in Matlab OOP.
The functioning code is:
classdef Cat < handle
properties
meowCount = 0;
end
methods
function obj = Cat() % all initializations, calls to base class, etc. here,
end
function Meow(obj)
disp('meowww');
obj.meowCount = obj.meowCount + 1;
end
end
end
I want to create something of the following sort akin to C++ as my real life function definitions are very big and I don't want to clutter my class definition:
classdef Cat < handle
properties
meowCount = 0;
end
methods
function obj = Cat() % all initializations, calls to base class, etc. here,
end
function Meow(obj);
end
end
%%
function Cat::Meow(obj)
disp('meowww');
obj.meowCount = obj.meowCount + 1;
end
So, basically write the definition of function Meow outside the class. How do I accomplish the above change ?
To play with the working first version you can use the following:
C = Cat;
C.meowCount
C.Meow
Create a folder called #Cat.
The within #Cat, put the following files:
Cat.m
classdef Cat < handle
properties
meowCount = 0;
end
methods
function obj = Cat()
end
Meow(obj) % this is optional, and just indicates the function signature
end
end
Meow.m
function Meow(obj)
disp('meowww');
obj.meowCount = obj.meowCount + 1;
end
Move out of the #Cat folder, and make sure it (or its parent folder) is on your path. Then try your examples.
If you use an # folder to contain your class like this, most methods (though not constructors, and not property get/set methods) can be moved to external files.
If you want, you can include a function signature with no implementation in the main classdef file. This is sometimes optional, but if you wish to change the Access level of the method away from default, it is necessary.
There are two ways of defining methods of a class. The newer, more portable way, is by defining them within the same classdef file. You can also write methods as separate M-file functions and put them in a #MyClass folder. Note that some methods must be in the classdef file. You can still define your separate file methods as static and private via helper functions. This is a bit of hack, which is why it's a good idea to put everything in the classdef file unless you have a very large project.
The best way to deal with clutter in your classdef file is to use code-folding. You can collapse individual methods and entire method blocks. In this way you can easily organize your classdef file to be as uncluttered as possible by grouping related methods together in the same methods block. Collapse any methods/blocks you aren't using at the time.
Additionally, you can use the "Go To" button in the Editor Ribbon Tab to select a specific method to view (if they are all defined in the same file).
Writing your methods in separate files may seem like a good solution at first, but if you have a class with many methods, it becomes extremely cumbersome to have many files open at once. Unlike C++, you can only define one method per file. It really ends up being quite a mess.
See Also:
Code Folding — Expand and Collapse Code Constructs
Editor/Debugger Code Folding Preferences

How to nest anonymous functions in Matlab?

I have a file funcs.m that stores anonymous functions. They must be usable by the files in the directory where it is. Currently, I use the anonymous functions so that I execute the file funcs.m in different files but I think this is a a wrong way of doing things. The other functions such as main.m and its nested function nest.m need to use the anonymous functions from funcs.m. I think paths won't solve this problem because the files are in the same folder. Basically I could solve this problem by copy-pasting the anonymous functions to every file but code-smell so:
Is there some way of reusing the funcs.m having the anon functions in Matlab?
Example
main.m
function main
funcs; % loads the anonymous functions
nest(par1,...,parN)
end
nest.m
function nest(par1,...,parN)
funcs; %ERRR: This fires err, why? Look: this was sourced already in main.m!
function neededOnlyHere(par100)
bq(q,A) %This needs the functions of the funcs
end
neededOnlyHere(somePar) %ERR to use the anon funcs from funcs
end
Functions main.m and nest.m use this function funcs.m having the anonymous funcs
bq=#(q,A) q*A; %Bolded q
I=#(ii,jj,A) find(A(ii,:)==1 & A(jj,:)==0);
AiNotj=zeros(1,Ncut);
...
ERROR
Attempt to add "bq" to a static workspace.
See MATLAB Programming, Restrictions on
Assigning to Variables for details.
Error in funcs (line 10)
bq=#(q,A) q*A;
%Bolded q
Why it's breaking
You get the error when calling it in nest.m because having a nested function makes its enclosing function's workspace a "static workspace"; that is, variable names cannot be added via eval(), assignin(), or other "dynamic" techniques; only variables that are explicitly assigned in that function's text are allowed. Evaluating a script to define local variables - which is what you're doing when calling funcs.m - is "dynamic", so prohibited in functions with nested functions. It works in main.m because main has no nested functions and is thus a "dynamic" workspace.
There are a couple ways you could change it to work with static workspaces and nested functions. The first thing to ask is whether you really need to make them anonymous functions?
Using package functions instead
If you don't need them to be anonymous functions per se, just break them out and put each one as a regular function in its own .m file; e.g. bg.m, I.m, AiNotj.m, and so on. Then they're all available to all other functions in that directory.
If that turns in to a mess of files, or if you want to scope them and maybe make them available only to the selected functions that really need them (that is, the functions currently calling funcs()), then you can stick them in a package. Create a subdirectory called +myfuncs and move all the little function files in there; e.g. +myfuncs/bq.m, +myfuncs/I.m, +myfuncs/AiNotj.m. (The + prefix tells Matlab the directory is a package.) Then you can pull all of them in to your function scope by doing import myfuncs.* as a direct replacement for where you're currently calling funcs().
function nest(par1,...,parN)
import myfuncs.*;
function neededOnlyHere(par100)
bq(q,A) % This will work, resolving to myfuncs.bq
end
You can do the import myfuncs.* from the command line to make them available interactively, too.
This is probably how Matlab itself wants you to organize clusters of related functions like this, and would be my first approach. It's the least "smelly" IMHO. If you really wanted to be able to edit them all in a single file like funcs.m for convenience, you could write a little code munger in Perl or whatever that parsed funcs.m and output them all as equivalent individual functions as a preprocessing step. (I think it's a bit of a bummer that you can't define multiple top-level functions in an M-file like this, but oh well.)
If you really need to work with anonymous functions, there are some workarounds.
Passing functions in a struct
You can change your funcs() function to actually return a struct of all those anonymous functions, using field names instead of local variable names.
function out = funcs
out.bq=#(q,A) q*A; %Bolded q
out.I=#(ii,jj,A) find(A(ii,:)==1 & A(jj,:)==0);
out.AiNotj=zeros(1,Ncut);
For this, you'd have to prefix all the function references with the struct name you're holding them in. Don't know how big a deal this is for you.
function nest(par1,...,parN)
fs = funcs;
function neededOnlyHere(par100)
fs.bq(q,A) %This needs the functions of the funcs
end
Preallocating variables
To get funcs() to work as-is, you can statically pre-allocate variables with all the function names you're going to use, so the Matlab parser recognizes them as statically assigned variables. Then when you call funcs(), it will re-assign the values of the existing variables, which is permissible in dynamic workspaces.
function nest(par1,...,parN)
[bq, I, AiNotj] = deal(); % Preallocate all names from funcs
funcs;
function neededOnlyHere(par100)
bq(q,A) %This needs the functions of the funcs
end
This would be a bit of a pain, because you'd have to re-edit every file that uses funcs whenever a new function name is added. You could at least write a little perl script to auto-generate that line of code by parsing funcs.m and outputting a "[bg, I, AiNotj,...] = deal();" with all the functions it finds, and you can just copy that in to your code.
Another way to do this would be to have funcs actually return all the functions in its output list. This would have the benefit of continuing to work even as you add new functions to funcs.m, as long as you don't remove or change the order of your existing anonymous functions.
function [bg,I,AiNotj] = funcs()
bg = ...
I = ...
% And then in the calling functions:
[bg,I,AiNotj] = funcs(); % which you can copy and paste from funcs.m's header
There are many ways of passing anonymous functions:
1) Pass the function itself:
function main
f = #(t) t^2 - 3;
param = randn(12,1);
g = test22(param,f);
disp (g)
end
function g = test22(param,f)
g = f(param(2));
disp(param(2))
end
2) Use globals (which usually should be avoided in complex code)
function main
global f
f = #(t) t^2 - 3;
param = randn(12,1);
g = test22(param);
disp (g)
end
function g = test22(param)
global f
g = f(param(2));
disp(param(2))
end

#folder and +folder

What is the meaning of the following folder names in MATLAB?
#folder
+folder
I've created a class Tata.m which uses the classdef syntax.
Should I put it in an #folder or a +folder?
I've looked at the documentation but it is not really clear
in which cases the #folder should be used and in which cases the +folder should be used.
The +folder piece is a MATLAB package folder. If you place Tata.m in a location like +folder/Tata.m, it will be known to MATLAB as the class folder.Tata. If you place it in a folder like someOtherFolder/Tata.m, or someOtherFolder/#Tata/Tata.m, it will be known to MATLAB as Tata.
It can be useful to place a classdef file in a class directory like #Tata to allow you to put the definition of some (or all) methods in separate files.
The doc has more details.
EDIT: To attempt to clarify the # directories: historically, a class Tata with methods methodOne and methodTwo would require the following files:
somePlaceOnThePath/#Tata/Tata.m
somePlaceOnThePath/#Tata/methodOne.m
somePlaceOnThePath/#Tata/methodTwo.m
In the "new" object system, you can still use the layout above without modification. At the other extreme, you can place the entire implementation of Tata in a single classdef block in:
somePlaceOnThePath/Tata.m
If you have some large methods, or want to split up the implementation of the class Tata into several files to make parallel development simpler, you can take use a classdef like this:
%# somePlaceOnThePath/#Tata/Tata.m:
classdef Tata
methods
result = methodTwo(obj, arg)
function methodOne(obj)
disp('hello from methodOne');
end
end
end
And also
%# somePlaceOnThePath/#Tata/methodTwo.m:
function result = methodTwo(obj, arg)
% do stuff with obj and arg
end
Strictly speaking, the advance declaration of methodTwo in the classdef is optional because it's using the default access specifiers. If you wanted to have methodTwo be a private method, you could place it in a methods (Access = private) block.

Constants in MATLAB

I've come into ownership of a bunch of MATLAB code and have noticed a bunch of "magic numbers" scattered about the code. Typically, I like to make those constants in languages like C, Ruby, PHP, etc. When Googling this problem, I found that the "official" way of having constants is to define functions that return the constant value. Seems kludgey, especially because MATLAB can be finicky when allowing more than one function per file.
Is this really the best option?
I'm tempted to use / make something like the C Preprocessor to do this for me. (I found that something called mpp was made by someone else in a similar predicament, but it looks abandoned. The code doesn't compile, and I'm not sure if it would meet my needs.)
Matlab has constants now. The newer (R2008a+) "classdef" style of Matlab OOP lets you define constant class properties. This is probably the best option if you don't require back-compatibility to old Matlabs. (Or, conversely, is a good reason to abandon back-compatibility.)
Define them in a class.
classdef MyConstants
properties (Constant = true)
SECONDS_PER_HOUR = 60*60;
DISTANCE_TO_MOON_KM = 384403;
end
end
Then reference them from any other code using dot-qualification.
>> disp(MyConstants.SECONDS_PER_HOUR)
3600
See the Matlab documentation for "Object-Oriented Programming" under "User Guide" for all the details.
There are a couple minor gotchas. If code accidentally tries to write to a constant, instead of getting an error, it will create a local struct that masks the constants class.
>> MyConstants.SECONDS_PER_HOUR
ans =
3600
>> MyConstants.SECONDS_PER_HOUR = 42
MyConstants =
SECONDS_PER_HOUR: 42
>> whos
Name Size Bytes Class Attributes
MyConstants 1x1 132 struct
ans 1x1 8 double
But the damage is local. And if you want to be thorough, you can protect against it by calling the MyConstants() constructor at the beginning of a function, which forces Matlab to parse it as a class name in that scope. (IMHO this is overkill, but it's there if you want it.)
function broken_constant_use
MyConstants(); % "import" to protect assignment
MyConstants.SECONDS_PER_HOUR = 42 % this bug is a syntax error now
The other gotcha is that classdef properties and methods, especially statics like this, are slow. On my machine, reading this constant is about 100x slower than calling a plain function (22 usec vs. 0.2 usec, see this question). If you're using a constant inside a loop, copy it to a local variable before entering the loop. If for some reason you must use direct access of constants, go with a plain function that returns the value.
For the sake of your sanity, stay away from the preprocessor stuff. Getting that to work inside the Matlab IDE and debugger (which are very useful) would require deep and terrible hacks.
I usually just define a variable with UPPER_CASE and place near the top of the file. But you have to take the responsibly of not changing its value.
Otherwise you can use MATLAB classes to define named constants.
MATLAB doesn't have an exact const equivalent. I recommend NOT using global for constants - for one thing, you need to make sure they are declared everywhere you want to use them. I would create a function that returns the value(s) you want. You might check out this blog post for some ideas.
You might some of these answers How do I create enumerated types in MATLAB? useful. But in short, no there is not a "one-line" way of specifying variables whose value shouldn't change after initial setting in MATLAB.
Any way you do it, it will still be somewhat of a kludge. In past projects, my approach to this was to define all the constants as global variables in one script file, invoke the script at the beginning of program execution to initialize the variables, and include "global MYCONST;" statements at the beginning of any function that needed to use MYCONST. Whether or not this approach is superior to the "official" way of defining a function to return a constant value is a matter of opinion that one could argue either way. Neither way is ideal.
My way of dealing with constants that I want to pass to other functions is to use a struct:
% Define constants
params.PI = 3.1416;
params.SQRT2 = 1.414;
% Call a function which needs one or more of the constants
myFunction( params );
It's not as clean as C header files, but it does the job and avoids MATLAB globals. If you wanted the constants all defined in a separate file (e.g., getConstants.m), that would also be easy:
params = getConstants();
Don't call a constant using myClass.myconst without creating an instance first! Unless speed is not an issue. I was under the impression that the first call to a constant property would create an instance and then all future calls would reference that instance, (Properties with Constant Values), but I no longer believe that to be the case. I created a very basic test function of the form:
tic;
for n = 1:N
a = myObj.field;
end
t = toc;
With classes defined like:
classdef TestObj
properties
field = 10;
end
end
or:
classdef TestHandleObj < handle
properties
field = 10;
end
end
or:
classdef TestConstant
properties (Constant)
field = 10;
end
end
For different cases of objects, handle-objects, nested objects etc (as well as assignment operations). Note that these were all scalars; I didn't investigate arrays, cells or chars. For N = 1,000,000 my results (for total elapsed time) were:
Access(s) Assign(s) Type of object/call
0.0034 0.0042 'myObj.field'
0.0033 0.0042 'myStruct.field'
0.0034 0.0033 'myVar' //Plain old workspace evaluation
0.0033 0.0042 'myNestedObj.obj.field'
0.1581 0.3066 'myHandleObj.field'
0.1694 0.3124 'myNestedHandleObj.handleObj.field'
29.2161 - 'TestConstant.const' //Call directly to class(supposed to be faster)
0.0034 - 'myTestConstant.const' //Create an instance of TestConstant
0.0051 0.0078 'TestObj > methods' //This calls get and set methods that loop internally
0.1574 0.3053 'TestHandleObj > methods' //get and set methods (internal loop)
I also created a Java class and ran a similar test:
12.18 17.53 'jObj.field > in matlab for loop'
0.0043 0.0039 'jObj.get and jObj.set loop N times internally'
The overhead in calling the Java object is high, but within the object, simple access and assign operations happen as fast as regular matlab objects. If you want reference behavior to boot, Java may be the way to go. I did not investigate object calls within nested functions, but I've seen some weird things. Also, the profiler is garbage when it comes to a lot of this stuff, which is why I switched to manually saving the times.
For reference, the Java class used:
public class JtestObj {
public double field = 10;
public double getMe() {
double N = 1000000;
double val = 0;
for (int i = 1; i < N; i++) {
val = this.field;
}
return val;
}
public void setMe(double val) {
double N = 1000000;
for (int i = 1; i < N; i++){
this.field = val;
}
}
}
On a related note, here's a link to a table of NIST constants: ascii table and a matlab function that returns a struct with those listed values: Matlab FileExchange
I use a script with simple constants in capitals and include teh script in other scripts tr=that beed them.
LEFT = 1;
DOWN = 2;
RIGHT = 3; etc.
I do not mind about these being not constant. If I write "LEFT=3" then I wupold be plain stupid and there is no cure against stupidity anyway, so I do not bother.
But I really hate the fact that this method clutters up my workspace with variables that I would never have to inspect. And I also do not like to use sothing like "turn(MyConstants.LEFT)" because this makes longer statements like a zillion chars wide, making my code unreadible.
What I would need is not a variable but a possibility to have real pre-compiler constants. That is: strings that are replaced by values just before executing the code. That is how it should be. A constant should not have to be a variable. It is only meant to make your code more readible and maintainable. MathWorks: PLEASE, PLEASE, PLEASE. It can't be that hard to implement this. . .