Does val or var make difference in immutable objects like lists or tuple?
scala> val ab = List(1,2,3)
ab: List[Int] = List(1, 2, 3)
scala> var ab = List(1,2,3)
ab: List[Int] = List(1, 2, 3)
I am beginner in scala.
You may be confusing two different aspects of immutability. The local variable ab refers to some object in memory, in this case a List. When you declare ab as a val you are instructing the compiler that ab will always refer to the same object. Because List is immutable, its contents will never change, but a var referring to it might be reassigned to some other List.
scala> import scala.collection.mutable.MutableList
import scala.collection.mutable.MutableList
scala> val a = List(1,2,3,4)
a: List[Int] = List(1, 2, 3, 4)
scala> val b = MutableList(1,2,3,4)
b: scala.collection.mutable.MutableList[Int] = MutableList(1, 2, 3, 4)
scala> var c = List(1,2,3,4)
c: List[Int] = List(1, 2, 3, 4)
Here, a is a val containing an immutable data structure. a refers to List(1,2,3,4) and will always do so.
The val b refers to a MutableList. We can change the internal contents of the MutableList but we cannot assign b to a different MutableList.
scala> b += 5
res6: b.type = MutableList(1, 2, 3, 4, 5)
scala> b = MutableList(2,3,5,7)
<console>:12: error: reassignment to val
b = MutableList(2,3,5,7)
^
With var c we have a variable that refers to an immutable data structure List but that can be reassigned to a different List.
scala> c = c :+ 5
c: List[Int] = List(1, 2, 3, 4, 5)
Note that the :+ operator (unlike the += operator above) does not change the List referred to by c. Instead it create a copy of the List with the element 5 appended. Because c was declared a var we can then assign this new list to c.
It's not really relevant whether the object that ab points to is mutable. val means that you cannot in the future assign ab to another value, while var allows it.
Try repeating the assignment in each case and see what happens:
scala> val ab = List(1,2,3)
ab: List[Int] = List(1, 2, 3)
scala> ab = List(1,2,3)
reassignment to val; not found: value ab
scala> var ab = List(1,2,3)
ab: List[Int] = List(1, 2, 3)
scala> ab = List(1,2,3)
ab: List[Int] = List(1, 2, 3)
It's a question of style.
In Scala using a val is generally preferred to using a var as in (functional) programming immutability makes it easier to reason about a program.
So if you can get what you want without resorting to var it is the way to go.
A typical application of a var would be if you want to use an immutable data structure and update it benifitting of structural sharing.
var data = List.empty[String] // var is importan here
def addToData(s: String) : Unit = { data = s :: data }
The same could be achieved by using a mutable datastructure
import scala.collection.mutable.ArrayBuffer
val data = ArrayBuffer.empty[String]
data += "Hello" // this function is here from the beginning
For an in depth discussion look at https://stackoverflow.com/a/4440614/344116 .
Related
I'm trying to add element to a List[String] while omitting annoying parenthesis. I tried this:
object Main extends App {
val l = List("fds")
val xs1: List[String] = l.+:("123") // ok
val xs2: List[String] = l +: "123" // compile-error
}
DEMO
Why is omitting parenthesis causing compile-error? These assignments look the same to me. What is the difference?
It's happening because of right associative methods.
scala> val l = List("abc")
l: List[String] = List(abc)
scala> "efg" +: l
res3: List[String] = List(efg, abc)
Read more here What good are right-associative methods in Scala?
Error case
scala> val l = List(1, 2, 3)
l: List[Int] = List(1, 2, 3)
scala> 4 +: l
res1: List[Int] = List(4, 1, 2, 3)
scala> l +: 1
<console>:13: error: value +: is not a member of Int
l +: 1
^
Because +: is right associative. Method +: is getting invoked on Int instead of list
In order to make it work we can explicitly invoke method on list without the special operator syntax
scala> val l = List(1, 2, 3)
l: List[Int] = List(1, 2, 3)
scala> l.+:(1)
res4: List[Int] = List(1, 1, 2, 3)
Above case works because its normal method invocation.
I have a function that takes a list of lists of integer, specifically Seq[Seq[Int]]. Then I produce this data from reading a text file and using split, and that produces a list of Array. That is not recognized by Scala, who raises a match error. But either IndexedSeq or Array alone are OK with a Seq[Int] function, apparently only the nested collection is an issue. How can I convert implicitly IndexedSeq[Array[Int]] to Seq[Seq[Int]], or how else could I do this other than using toList as demonstrated below? Iterable[Iterable[Int]] seems to be fine, for instance, but I can't use this.
scala> def g(x:Seq[Int]) = x.sum
g: (x: Seq[Int])Int
scala> g("1 2 3".split(" ").map(_.toInt))
res6: Int = 6
scala> def f(x:Seq[Seq[Int]]) = x.map(_.sum).sum
f: (x: Seq[Seq[Int]])Int
scala> f(List("1 2 3", "3 4 5").map(_.split(" ").map(_.toInt)))
<console>:9: error: type mismatch;
found : List[Array[Int]]
required: Seq[Seq[Int]]
f(List("1 2 3", "3 4 5").map(_.split(" ").map(_.toInt)))
^
scala> f(List("1 2 3", "3 4 5").map(_.split(" ").map(_.toInt).toList))
res8: Int = 18
The problem is that Array does not implement SeqLike. Normally, implicit conversions to ArrayOps or WrappedArray defined in scala.predef allow to use array just like Seq. However, in your case array is 'hidden' from implicit conversions as a generic argument. One solution would be to hint compiler that you can apply an implicit conversion to the generic argument like this:
def f[C <% Seq[Int]](x:Seq[C]) = x.map(_.sum).sum
This is similar to Paul's response above. The problem is that view bounds are deprecated in Scala 2.11 and using deprecated language features is not a good idea. Luckily, view bounds can be rewritten as context bounds as follows:
def f[C](x:Seq[C])(implicit conv: C => Seq[Int]) = x.map(_.sum).sum
Now, this assumes that there is an implicit conversion from C to Seq[Int], which is indeed present in predef.
How about this:
implicit def _convert(b:List[Array[Int]]):Seq[Seq[Int]]=b.map(_.toList)
Redefine f to be a bit more flexible.
Since Traversable is a parent of List, Seq, Array, etc., f will be compatible with these containers if it based on Traversable. Traversable has sum, flatten, and map, and that is all that's needed.
What is tricky about this is that
def f(y:Traversable[Traversable[Int]]):Int = y.flatten.sum
is finicky and doesn't work on a y of type List[Array[Int]] although it will work on Array[List[Int]]
To make it less finicky, some type view bounds will work.
Initially, I replaced your sum of sums with a flatten/sum operation.
def f[Y<%Traversable[K],K<%Traversable[Int]](y:Y):Int=y.flatten.sum
I found this also seems to work but I did not test as much:
def f[Y <% Traversable[K], K <% Traversable[Int]](y:Y):Int=y.map(_.sum).sum
This <% syntax says Y is viewable as Traversable[K] for some type K that is viewable as a Traversable of Int.
Define some different containers, including the one you need:
scala> val myListOfArray = List(Array(1,2,3),Array(3,4,5))
val myListOfArray = List(Array(1,2,3),Array(3,4,5))
myListOfArray: List[Array[Int]] = List(Array(1, 2, 3), Array(3, 4, 5))
scala> val myArrayOfList = Array(List(1,2,3),List(3,4,5))
val myArrayOfList = Array(List(1,2,3),List(3,4,5))
myArrayOfList: Array[List[Int]] = Array(List(1, 2, 3), List(3, 4, 5))
scala> val myListOfList = List(List(1,2,3),List(3,4,5))
val myListOfList = List(List(1,2,3),List(3,4,5))
myListOfList: List[List[Int]] = List(List(1, 2, 3), List(3, 4, 5))
scala> val myListOfRange = List(1 to 3, 3 to 5)
val myListOfRange = List(1 to 3, 3 to 5)
myListOfRange: List[scala.collection.immutable.Range.Inclusive] = List(Range(1, 2, 3), Range(3, 4, 5))
Test:
scala> f(myListOfArray)
f(myListOfArray)
res24: Int = 18
scala> f(myArrayOfList)
f(myArrayOfList)
res25: Int = 18
scala> f(myListOfList)
f(myListOfList)
res26: Int = 18
scala> f(myListOfRange)
f(myListOfRange)
res28: Int = 18
Is there a quick scala idiom to have retrieve multiple elements of a a traversable using indices.
I am looking for something like
val L=1 to 4 toList
L(List(1,2)) //doesn't work
I have been using map so far, but wondering if there was a more "scala" way
List(1,2) map {L(_)}
Thanks in advance
Since a List is a Function you can write just
List(1,2) map L
Although, if you're going to be looking things up by index, you should probably use an IndexedSeq like Vector instead of a List.
You could add an implicit class that adds the functionality:
implicit class RichIndexedSeq[T](seq: IndexedSeq[T]) {
def apply(i0: Int, i1: Int, is: Int*): Seq[T] = (i0+:i1+:is) map seq
}
You can then use the sequence's apply method with one index or multiple indices:
scala> val data = Vector(1,2,3,4,5)
data: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3, 4, 5)
scala> data(0)
res0: Int = 1
scala> data(0,2,4)
res1: Seq[Int] = ArrayBuffer(1, 3, 5)
You can do it with a for comprehension but it's no clearer than the code you have using map.
scala> val indices = List(1,2)
indices: List[Int] = List(1, 2)
scala> for (index <- indices) yield L(index)
res0: List[Int] = List(2, 3)
I think the most readable would be to implement your own function takeIndices(indices: List[Int]) that takes a list of indices and returns the values of a given List at those indices. e.g.
L.takeIndices(List(1,2))
List[Int] = List(2,3)
I am trying to solve a hw problem in Scala. A traditional solution require a stack but stacks have not been introduced in the class so far. Only lists have been introduced. My question is how can treat a list as a stack? In other words, how can I mimic pushing and popping elements on a list?
I hope this will show the idea:
scala> val x = List(1,2,3)
x: List[Int] = List(1, 2, 3)
scala> val pushed0 = 0::x
push3: List[Int] = List(0, 1, 2, 3)
scala> val pop0 = pushed0.head
pop3: Int = 0
// it is actually more peek than fair pop
scala> val stackAfterPop = pushed0.tail
stackAfterPop: List[Int] = List(1, 2, 3)
It will actually have much better syntax when you'll be acquainted with pattern matching (next week I guess):
scala> val popped::stack = pushed0
popped: Int = 0
stack: List[Int] = List(1, 2, 3)
I am reading scaladocs and just wondering difference between direct assignment and .clone method.
val a=Array(1,2,3,4,5)
case 1:
val b=a
case 2 :
val b=a.clone()
Consider this:
scala> val a=Array(1,2,3,4,5)
a: Array[Int] = Array(1, 2, 3, 4, 5)
scala> val b = a
b: Array[Int] = Array(1, 2, 3, 4, 5)
scala> val c = a.clone()
c: Array[Int] = Array(1, 2, 3, 4, 5)
scala> b(0) = 0
scala> c(1) = 1
scala> a
res2: Array[Int] = Array(0, 2, 3, 4, 5)
scala> b
res3: Array[Int] = Array(0, 2, 3, 4, 5)
scala> c
res4: Array[Int] = Array(1, 1, 3, 4, 5)
As you can see, when you do val b = a, then a and b point to the same object. When the object is changed, the change will be seen by both.
On the other hand, when you clone the array, you produce a new array with the same content. Changing this new array does not change the old one.
I believe case 1 just sets the reference of a to b while case 2 creates an entirely new array that is a copy of a and putting the value in b.
In other words if you in case a edit the a array the b array will also be edited this is not the case in case 2
Here is an answer in code:
scala> val a = Array(1,2,3,4,5)
scala> a.hashCode()
res12: Int = 1382155266
scala> val b = a
scala> b.hashCode()
res13: Int = 1382155266
scala> val c = a.clone()
scala> c.hashCode()
res14: Int = 2062756135
scala> a eq b
res15: Boolean = true
scala> a eq c
res16: Boolean = false
scala> b eq c
res17: Boolean = false
In case 1, both reference leads to the same object while in the second case, a new object is created and a and b do not reference the same object.