Using Perl and Moose, object data can be accessed in 2 ways.
$self->{attribute} or $self->attribute()
Here is a simple example demonstrating both:
# Person.pm
package Person;
use strict;
use warnings;
use Moose;
has 'name' => (is => 'rw', isa => 'Str');
has 'age' => (is => 'ro', isa => 'Int');
sub HAPPY_BIRTHDAY {
my $self = shift;
$self->{age}++; # Age is accessed through method 1
}
sub HAPPY_BIRTHDAY2 {
my $self = shift;
my $age = $self->age();
$self->age($age + 1); # Age is accessed through method 2 (this will fail)
}
1;
# test.pl
#!/usr/bin/perl
use strict;
use warnings;
use Person;
my $person = Person->new(
name => 'Joe',
age => 23,
);
print $person->age()."\n";
$person->HAPPY_BIRTHDAY();
print $person->age()."\n";
$person->HAPPY_BIRTHDAY2();
print $person->age()."\n";
I know that when you are outside of the Person.pm file it is better to use the $person->age() version since it prevents you from making dumb mistakes and will stop you from overwriting a read only value, but my question is...
Inside of Person.pm is it best to use $self->{age} or $self->age()? Is it considered bad practice to overwrite a read-only attribute within the module itself?
Should this attribute be changed to a read/write attribute if its value is ever expected to change, or is it considered acceptable to override the read-only aspect of the attribute by using $self->{age} within the HAPPY_BIRTHDAY function?
When using Moose, the best practice is to always use the generated accessor methods, even when inside the object's own class. Here are a few reasons:
The accessor methods may be over-ridden by a child class that does something special. Calling $self->age() assures that the correct method will be called.
There may be method modifiers, such as before or after, attached to the attribute. Accessing the hash value directly will skip these.
There may be a predicate or clearer method attached to the attribute (e.g. has_age). Messing with the hash value directly will confuse them.
Hash keys are subject to typos. If you accidentally say $self->{aeg} the bug will not be caught right away. But $self->aeg will die since the method does not exist.
Consistency is good. There's no reason to use one style in one place and another style elsewhere. It makes the code easier to understand for newbs as well.
In the specific case of a read-only attribute, here are some strategies:
Make your objects truly immutable. If you need to change a value, construct a new object which is a clone of the old one with the new value.
Use a read-only attribute to store the real age, and specify a private writer method
For example:
package Person;
use Moose;
has age => ( is => 'ro', isa => 'Int', writer => '_set_age' );
sub HAPPY_BIRTHDAY {
my $self = shift;
$self->_set_age( $self->age + 1 );
}
Update
Here's an example of how you might use a lazy builder to set one attribute based on another.
package Person;
use Moose;
has age => ( is => 'rw', isa => 'Int', lazy => 1, builder => '_build_age' );
has is_baby => ( is => 'rw', isa => 'Bool', required => 1 );
sub _build_age {
my $self = shift;
return $self->is_baby ? 1 : 52
}
The lazy builder is not called until age is accessed, so you can be sure that is_baby will be there.
Setting the hash element directly will of course skip the builder method.
I don't think $self->{age} is a documented interface, so it's not even guaranteed to work.
In this case I'd use a private writer as described in https://metacpan.org/pod/Moose::Manual::Attributes#Accessor-methods:
has 'weight' => (
is => 'ro',
writer => '_set_weight',
);
You could even automate this using 'rwp' from https://metacpan.org/pod/MooseX::AttributeShortcuts#is-rwp:
use MooseX::AttributeShortcuts;
has 'weight' => (
is => 'rwp',
);
Out-of-the-box perl isn't type safe and doesn't have much in the way of encapsulation, so it's easy to do reckless things. Moose imposes some civilization on your perl object, exchanging security and stability for some liberty. If Moose gets too stifling, the underlying Perl is still there so there are ways to work around any laws the iron fist of Moose tries to lay down.
Once you have wrapped your head around the fact that you have declared an attribute read-only, but you want to change it, even though you also said you wanted it to be read-only, and in most universes you declare something read only because you don't want to change it, then by all means go ahead and update $person->{age}. After all, you know what you are doing.
Related
I have a Moose class with an overloaded stringification operator which I would actually like to change at runtime, because I need text output in different formats.
In other words, I would like to be able to do something like this:
$obj = Class->new("a'");
$obj->formatter("A::Formatter");
print "$obj";
# prints "a'"
$obj->formatter("Another::Formatter");
print "$obj";
# prints a1
I would also like the formatters to be modular, so that I can encapsulate and plug in different ones without creating a giant spaghetti mess.
How should I best do this? are roles a good solution for this kind of problem? I have checked MooseX::Object::Pluggable, MooseX::Traits::Pluggable and MooseX::Traits to start but need advice as this is uncharted territory for me.
You don't need to change the overloading at runtime, just how it's implemented. Remember, overloading can be done with a method name as opposed to a subref:
package Foo;
use Moose;
use overload q{""} => '_stringify';
has id => (
is => 'ro',
isa => 'Str',
required => 1,
);
has formatter_class => (
is => 'rw',
isa => 'ClassName',
required => 1,
);
sub _stringify {
my $self = shift;
return $self->formatter_class()->new()->format($self);
}
We use Moose classes that serialize iterators into various output formats. We describe the iterator as an attribute:
has iterator => (
is => 'ro',
isa => 'CodeRef',
required => 1,
);
This has worked fine so far, but we have lately been using Iterator::Simple to prepare iterators for later consumption. This means that we can go about writing this:
has iterator => (
is => 'ro',
isa => 'CodeRef|Iterator::Simple::Iterator',
required => 1,
);
And allow our serializers to accept the iterator class correctly. However, that seems to be a incomplete solution.
Is there a way in Moose to specify the constraint that the attribute must be callable? I suspect it may be possible with Moose::Util::TypeConstraints and using overload::Overloaded on &{} to check, but I'd like to know if anyone has created a module to do this already or if there is a Moose-standard way to test for this.
CodeRef only allows unblessed code references. Fortunately, it's easy to make your own types.
Define Callable as shown below, then use it instead of CodeRef. It allows the following:
Unblessed code references.
Blessed code references.
Objects that pretend to be code references (i.e. those that overload &{}).
use Moose::Util::TypeConstraints;
use overload qw( );
use Scalar::Util qw( );
subtype 'Callable'
=> as 'Ref'
=> where {
Scalar::Util::reftype($_) eq 'CODE'
||
Scalar::Util::blessed($_) && overload::Method($_, "&{}")
}
# Written such that parent's inline_as needs not be prepended.
=> inline_as {'(
(Scalar::Util::reftype('.$_[1].') // "") eq 'CODE'
||
Scalar::Util::blessed('.$_[1].') && overload::Method('.$_[1].', "&{}")
)'};
no Moose::Util::TypeConstraints;
Do you know enough to get from Scalar::Util::reftype?
I have a class where I want to apply string overloading on its id attribute. However, Moose doesn't allow string overloading on attribute accessors. For example:
package Foo;
use Moose;
use overload '""' => \&id, fallback => 1;
has 'id' => (
is => 'ro',
isa => 'Int',
default => 5,
);
package main;
my $foo = Foo->new;
print "$foo\n";
The above will give an error:
You are overwriting a locally defined method (id) with an accessor at C:/perl/site/lib/Moose/Meta/Attribute.pm line 927
I have tried a couple of options to get around this:
Marking id is => bare, and replacing it with my own accessor: sub id {$_[0]->{id}}. But this is just a hack.
Having the string overloader use another method which just delegates back to id: sub to_string {$_[0]->id}.
I'm just wondering if anyone has a better way of doing this?
use overload '""' => sub {shift->id}, fallback => 1;
Works fine for me.
I believe you are getting an error because \&id creates a placeholder for a sub to be defined later, because Perl will need to know the address that sub will have when it is defined to create a reference to it. Moose has it's own checks to try to avoid overwriting methods you define and reports this to you.
Since I think what you really want to do is call the id method when the object is used as a sting like so:
use overload '""' => 'id', fallback => 1;
From the overload documentation
Values specified as strings are interpreted as method names.
I'm having trouble figuring out how to structure Perl modules in an object oriented way so I can have one parent module with a number of submodules and only the specific submodules that are needed would be loaded by a calling script. For example I want to be able to make method calls like so:
use Example::API;
my $api = Example::API->new();
my $user = {};
$user->{'id'} = '12345';
$api->Authenticate();
$user->{'info'} = $api->Users->Get($user->{'id'});
$user->{'friends'} = $api->Friends->Get($user->{'id'});
In terms of file structure I'd like to have the modules setup as follows or in whatever structure is required to make everything work correctly:
api.pm
users.pm
friends.pm
...
The reason I want to do this in the first place is so that if someone just wants to authenticate against the API they don't have to load all the other modules. Similarly, if someone just wants to get a user's information, they wouldn't have to load the friends.pm module, just the users.pm. I'd appreciate it if you could provide the necessary example Perl code for setting up each module as well as explain how the file structure should be setup. If I'm going about this all wrong to accomplish what I'm try to accomplish I'd appreciate an explanation of the best way to do this and some example code on how it should be setup.
From your example, in your main module I assume you will be providing accessor methods to get at the subclasses. So all you have to do is include require Sub::Module; at the top of that method. Nothing will happen at compile time, but the first time that code is run, perl will load the module. After the first load, the line require Sub::Module; will become a no-op.
If all of your code is object oriented, you won't need to worry about importing functions. But if you do, the statement use Module qw(a b c); is interpreted as:
BEGIN {
require Module;
Module->import(qw(a b c));
}
BEGIN makes it happen at compile time, but there is nothing stopping you from using the internals at run time. Any subroutines you import at runtime must be called with parenthesis, and prototypes will not work, so unless you know what you are doing, runtime imports are probably a bad idea. Runtime requires and access via package methods are completely safe though.
So your $api->Users method might work something like this:
# in package 'Example::API' in the file 'Example/API.pm'
sub Users {
require Example::API::Users; # loads the file 'Example/API/Users.pm'
return Example::API::Users->new( #_ ); # or any other arguments
}
In my examples above, I showed two translations between package names and the files they were in. In general, all :: are changed to / and .pm is added to the end. Then perl will search for that file in all of the directories in the global variable #INC. You can look at the documentation for require for all of the details.
Update:
One way to cache this method would be to replace it at runtime with a function that simply returns the value:
sub Users {
require Example::API::Users;
my $users = Example::API::Users->new;
no warnings 'redefine';
*Users = sub {$users};
$users
}
Here's a big ugly Moose example that selectively applies roles to an API driver instance.
script.pl
use Example::User;
# User object creates and authenticates a default API object.
my $user = Example::User->new( id => '12345' );
# When user metadata is accessed, we automatically
# * Load the API driver code.
# * Get the data and make it available.
print "User phone number is: ", $user->phone_number, "\n";
# Same thing with Friends.
print "User has ", $user->count_friends, " friends\n";
print "User never logged in\n" unless $user->has_logged_in;
Example/API.pm - the basic protocol driver class:
package Example::API;
use Moose;
has 'host' => (
is => 'ro',
default => '127.0.0.1',
);
sub Authenticate {
return 1;
}
# Load the user metadata API driver if needed.
# Load user metadata
sub GetUserInfo {
my $self = shift;
require Example::API::Role::UserInfo;
Example::API::Role::UserInfo->meta->apply($self)
unless $self->does('Example::API::Role::UserInfo');
$self->_Get_UserInfo(#_);
}
# Load the friends API driver if needed.
# Load friends data and return an array ref of Friend objects
sub GetFriends {
my $self = shift;
#require Example::API::Role::Friends;
Example::API::Role::Friends->meta->apply($self)
unless $self->does('Example::API::Role::Friends');
$self->_Get_Friends(#_);
}
The user metadata and friends data drivers are built as 'roles' which are dynamically applied to an API driver instance as needed.
Example/API/Role/UserInfo.pm:
package Example::API::Role::UserInfo;
use Moose::Role;
sub _Get_UserInfo {
my $self = shift;
my $id = shift;
my $ui = Example::API::User::MetaData->new(
name => 'Joe-' . int rand 100,
phone_number => int rand 999999,
);
return $ui;
}
Example/API/Role/Friends.pm:
use Moose::Role;
sub _Get_Friends {
my $self = shift;
my $id = shift;
my #friends = map {
Example::API::Friend->new(
friend_id => "$id-$_",
name => 'John Smith'
);
} 1 .. (1 + int rand(5));
return \#friends;
}
A friend object:
Example/API/Friend.pm
package Example::API::Friend;
use Moose;
has 'friend_id' => (
is => 'ro',
isa => 'Str',
required => 1,
);
has 'name' => ( isa => 'Str', is => 'ro', required => 1 );
And a user metadata object.
Example/API/User/MetaData.pm
package Example::API::User::MetaData;
use Moose;
has 'name' => (
is => 'ro',
isa => 'Str',
);
has 'phone_number' => (
is => 'ro',
isa => 'Str',
);
has 'last_login' => (
is => 'ro',
isa => 'DateTime',
predicate => 'has_logged_in',
);
And finally a user object. I've used many Moose features to make this a very capable object with only a small amount of imperative code.
package Example::User;
use Moose;
has 'id' => (
is => 'ro',
isa => 'Int',
required => 1,
);
has 'server_connection' => (
is => 'ro',
isa => 'Example::API',
builder => '_build_server_connection',
);
# Work with a collection of friend objects.
has 'friends' => (
is => 'ro',
isa => 'ArrayRef[Example::API::Friend]',
traits => ['Array'],
handles => {
all_friends => 'elements',
map_friends => 'map',
filter_friends => 'grep',
find_option => 'first',
get_option => 'get',
join_friends => 'join',
count_friends => 'count',
has_no_friends => 'is_empty',
sorted_friends => 'sort',
},
lazy_build => 1,
);
has 'user_info' => (
is => 'ro',
isa => 'Example::API::User::MetaData',
handles => {
name => 'name',
last_login => 'last_login',
phone_number => 'phone_number',
has_logged_in => 'has_logged_in',
},
lazy_build => 1,
);
sub _build_server_connection {
my $api = Example::API->new();
$api->Authenticate();
return $api;
}
sub _build_friends {
my $self = shift;
$self->server_connection->GetFriends( $self->id );
}
sub _build_user_info {
my $self = shift;
$self->server_connection->GetUserInfo( $self->id );
}
This example makes use of a lot of Moose magic, but you wind up with a very simple interface for those using the objects. While this is close to 200 lines of formatted code, we get a huge amount done.
Adding type coercion would give an even easier interface. Raw string dates can be automatically parsed into DateTime objects. Raw IP addresses and server names can be converted into API servers.
I hope this inspires you to take a look at Moose. The documentation is excellect, check out the Manual and the Cookbooks, in particular.
Managing the exports is tricky, but you could use an AUTOLOAD solution to this problem. If perl doesn't recognize the subroutine name you are trying to call, it can pass it to a sub called AUTOLOAD. Suppose we did this:
use Example::API;
sub AUTOLOAD {
my $api = shift;
eval "require $AUTOLOAD"; # $api->Foo->... sets $AUTOLOAD to "Example::API::Foo"
die $# if $#; # fail if no Example::API::Foo package
$api;
}
Then this code:
$api = new Example::API;
$api->Foo->bar(#args);
will (assuming we haven't imported Example::API::Foo first) call our AUTOLOAD method, attempt to load the Example::API::Foo module, and then try to call the method Example::API::Foo::bar with the $api object and the other arguments you provide.
Or in the worst case,
$api->Foo->bar(#args)
causes this code to be invoked
eval "require Example::API::Foo";
die $# if $#;
&Example::API::Foo::bar($api,#args);
Depending on how you use this feature, it might be a lot more overhead than just importing everything you need.
There are a number of tools that can be used to quickly build an skeletal structure for your new module development.
h2xs comes with the standard Perl distribution. Its primary focus is on building XS code for interfacing with C libraries. However, it does provide basic support for laying out pure Perl projects: h2xs -AX --skip-exporter -n Example::API
I use Module::Starter to build a beginning layout for my module development. It does a lot that h2xs doesn't do. module-starter --module=Example::API,Example::Friends,Example::Users --author="Russel C" --email=russel#example.com
Dist::Zilla is a new tool that handles many tasks related to maintaining a Perl module distribution. It is amazingly powerful and flexible. But it is new and the docs are a bit rough. The unavoidable complexity that comes with all that power and flexibility means that learning to use it is a project. It looks very interesting, but I haven't taken the time to dive in, yet.
If you need to limit the number of methods loaded, you can use AutoLoader or SelfLoader to load subroutines as they are called. This will lead to a slight overhead when a method is called for the first time. In my experience, this approach is rarely needed.
The best thing is to keep your objects small and strictly defined so that they embody a simple concept. Do not allow ambiguity or half-way concepts into your objects, instead consider using composition and delegation to handle areas of potential confusion. For example, instead of adding date formatting methods to handle a user's last login, assign DateTime objects to the last_login attribute.
In the interest of making composition and delegation easy, consider using Moose to build your objects. It removes much of the drudgery involved in Perl OOP and object composition and delegation in specific.
I'm working on a serialization tool using Moose to read and write a file that conforms to a nonstandard format. Right now, I determine how to load the next item based on the default values for the objects in the class, but that has its own drawbacks. Instead, I'd like to be able to use information in the attribute meta-class to generate a new value of the right type. I suspect that there's a way to determine what the 'isa' restriction is and derive a generator from it, but I saw no particular methods in Moose::Meta::Attribute or Class::MOP::Attribute that could help me.
Here's a bit further of an example. Let's say I have the following class:
package Example;
use Moose;
use My::Trait::Order;
use My::Class;
with 'My::Role::Load', 'My::Role::Save';
has 'foo' => (
traits => [ 'Order' ],
isa => 'Num',
is => 'rw',
default => 0,
order => 1,
);
has 'bar' => (
traits => [ 'Order' ],
isa => 'ArrayRef[Str]',
is => 'rw',
default => sub { [ map { "" } 1..8 ] }
order => 2,
);
has 'baz' => (
traits => [ 'Order' ],
isa => 'Custom::Class',
is => 'rw',
default => sub { Custom::Class->new() },
order => 3,
);
__PACKAGE__->meta->make_immutable;
1;
(Further explanation: My::Role::Load and My::Role::Save implement the serialization roles for this file type. They iterate over the attributes of the class they're attached to, and look at the attribute classes for an order to serialize in.)
In the My::Role::Load role, I can iterate over the meta object for the class, looking at all the attributes available to me, and picking only those that have my Order trait:
package My::Role::Load;
use Moose;
...
sub load {
my ($self, $path) = #_;
foreach my $attribute ( $self->meta->get_all_attributes ) {
if (does_role($attribute, 'My::Trait::Order') ) {
$self->load_attribute($attribute) # do the loading
}
}
}
Now, I need to know the isa of the attribute that the meta-attribute represents. Right now, I test that by getting an instance of it, and testing it with something that's kind of like this:
use 5.010_001; # need smartmatch fix.
...
sub load_attribute {
my ($self, $attribute, $fh) = #_;
my $value = $attribute->get_value($self); # <-- ERROR PRONE PROBLEM HERE!
if (ref($value) && ! blessed($value)) { # get the arrayref types.
given (ref($value)) {
when('ARRAY') {
$self->load_array($attribute);
}
when('HASH') {
$self->load_hash($attribute);
}
default {
confess "unable to serialize ref of type '$_'";
}
}
}
else {
when (\&blessed) {
confess "don't know how to load it if it doesn't 'load'."
if ! $_->can('load');
$_->load();
}
default {
$attribute->set_value($self, <$fh>);
}
}
}
But, as you can see at # <-- ERROR PRONE PROBLEM HERE!, this whole process relies on there being a value in the attribute to begin with! If the value is undef, I have no indication as to what to load. I'd like to replace the $attribute->get_value($self) with a way to get information about the type of value that needs to be loaded instead. My problem is that the docs I linked to above for the Class::MOP::Attribute and the Moose::Meta::Attribute don't seem to have any way of getting at the type of object that the attribute is supposed to get.
The type information for an attribute is basically what I'm trying to get at.
(Note to future readers: the answer here got me started, but is not the final solution in of itself. You will have to dig into the Moose::Meta::TypeConstraint classes to actually do what I'm looking for here.)
Not sure I follow what you are after and perhaps Coercions might do what you want?
However to get the attributes isa:
{
package Foo;
use Moose;
has 'bar' => ( isa => 'Str', is => 'rw' );
}
my $foo = Foo->new;
say $foo->meta->get_attribute('bar')->type_constraint; # => 'Str'
/I3az/
Out of curiosity why not use/extend MooseX::Storage? It does Serialization, and has for about two and a half years. At the very least MooseX::Storage will help you by showing how a (well tested and production ready) serialization engine for Moose is written.
I'm not quite sure I understand (perhaps you can include some pseudocode that demonstrates what you are looking for), but it sounds like you could possibly get the behaviour you want by defining a new attribute trait: set up your attribute so that a bunch of methods on the class delegate to the attribute's object (isa => 'MySerializer', handles => [ qw(methods) ]).
You might possibly also need to subclass Moose::Meta::Class (or better, add a role to it) which augments the behaviour of add_attribute().
Edit: If you look at the source for Moose::Meta::Attribute (specifically the _process_options method), you will see that the isa option is processed by Moose::Util::TypeConstraints to return the actual type to be stored in the type_constraint field in the object. This will be a Moose::Meta::TypeConstraint::Class object, which you can make calls like is_a_type_of() against.
This field is available via the type_constraint method in Moose::Meta::Attribute. See Moose::Meta::TypeConstraint for all the interfaces available to you for checking an attributes's type.