How many CPUs does the CloudSQL instance have? - google-cloud-sql

How many CPUs does the CloudSQL instance have?
Documentation says it is an appropriate amount of CPU and it is not clear.

Google does not provide this information. The only documentation shared in the 'Pricing' Cloud SQL page states:
"Each instance tier comes with the RAM shown above, along with an appropriate amount of CPU."
The Google Cloud SQL public issue tracker reveals one request for CPU information to which the response was:
Regarding the CPU for each instance type, Cloud SQL provides a sufficient amount of CPU for the ram. We do not expose the exact CPU allocated.
The status flagged as a Note indicates this request will not be fulfilled.
I suspect with scalability in mind, that Google's strategy scaling through instance replication and distribution rather than augmenting CPU on individual instances though I don't know this for sure.

Not just the number of CPUs, but also the frequency of the CPUs.
From the word "Tier", we know the CPU speed/performance of that tier is proportional to the Tier number. For example, D32 is twice faster than D16. I think D0 should really be called D0.5.

Related

High CPU usage on Cloud SQL causing timeouts

We have a postres database that has billions of records in it.
We have one client that uses our older API to query the database to fetch thousands of records once a day.
I would say close to the top end of the thousands.
The API is currently on a compute engine behind a load balancer and during the allotted time I spin up 6 instances of this to attempt to help handle the load.
What I have found is that the CPU usage on cloud SQL is maxing out at 100% and most of the other stats are fine, it's just the CPU.
This basically renders our API useless as we can't accept connections and it just shits its self.
What can we do to help this?
Here is the CPU utilisation chart
And the connections
Read/Writes
Memory Usage
You can see in most of the other charts the readings are well within normal for what we expect.
I don't really want to have to beef up the CPU usage if it isn't really the actual underlining problem.
A further thing to note is we have developed a new endpoint for this client specifically to use, they have not got that in place yet, and there is no guarantee that it will reduce the db load.
High CPU usage can most definitely cause dropped or ignored connections. The database engine and underlying OS are fighting for resources and aren't able to respond to the connection in time.
While you can increase CPU usage, it looks like the CPU usage you have it (usually) enough, except during parts where the CPU is at 100%. I'd suggest instead finding out why the query is eating so much CPU usage and optimizing it.
You might be interested in something like Cloud SQL Insights to help debug the query.

GCP CloudSQL (PostgreSQL) Crash During Stored Procedure Execution and Failover

I have a stored procedure in GCP CloudSQL (PostgreSQL v9.0.23). It works find in lower environments; but when it runs in Production (with significantly more volume), it crashes the DB itself which results in a Failover.
When we checked the metrics, what we found out is that the memory is more than 90% just before it crashes (15 GB out of the 16GB instance memory). Also the Read / Writes are very high >1000 Ops per second.
The SP does some select and insert statements. Any suggestions to improve this situation helps.
Thanks in advance.
As you have mentioned that the Cloud SQL instance is running smoothly with a small amount of workload but crashing with the Production environment where more intensive workloads are there, it seems the issue is with the instance size. So I would suggest you increase the instance size as per your need.
Also you have mentioned that the memory usage is 15 GB out of 16 GB which amounts to nearly 94%. As per this document your Cloud SQL instance will not be covered under Cloud SQL SLA if memory usage is over 90% for more than 6 hours of duration. So I would suggest you keep the memory usage within 90%. Also I would suggest keeping the CPU utilization as mentioned in this document. To know when your instance reaches any threshold I will suggest you set a monitoring alert for that metrics as mentioned here.
If increasing your instance size doesn’t help I would recommend you to create a support ticket with Google Cloud Support so that they can investigate in detail.

How to calculate the number of CPU, memory and storage that my Google Cloud SQL needs

My DB is reaching the 100% of CPU utilization and increasing the number of CPU is not working anymore.
What kind of information should I consider to create my Google Cloud SQL? How do you set up the DB configuration?
Info I have:
For 10-50 minute a day I have 120 request/seconds and the CPU reaches 100% of utilization
Memory usage is the maximum 2.5GB during this critical period
Storage usage is currently around 1.3GB
Current configuration:
vCPUs: 10
Memory: 10 GB
SSD storage: 50 GB
Unfortunately, there is no magic formula for determining the correct database size. This is because queries have variable load - some are small and simple and take no time at all, others are complex or huge and take lots of resources to complete.
There are generally two strategies to dealing with high load: Reduce your load (use connection pooling, optimize your queries, cache results), or increase the size of your database (add additional CPUs, Storage, or Read replicas).
Usually, when we have CPU utilization, it is because the CPU is overloaded or we have too many database tables in the same instances. Here are some common issues and fixes provided by Google’s documentation:
If CPU utilization is over 98% for 6 hours, your instance is not properly sized for your workload, and it is not covered by the SLA.
If you have 10,000 or more database tables on a single instance, it could result in the instance becoming unresponsive or unable to perform maintenance operations, and the instance is not covered by the SLA.
When the CPU is overloaded, it is recommended to use this documentation to view the percentage of available CPU your instance is using on the Instance details page in the Google Cloud Console.
It is also recommended to monitor your CPU usage and receive alerts at a specified threshold, set up a Stackdriver alert.
Increasing the number of CPUs for your instance should reduce the strain of your instance. Note that changing CPUs requires an instance restart. If your instance is already at the maximum number of CPUs, shard your database to multiple instances.
Google has this very interesting documentation about investigating high utilization and determining whether a system or user task is causing high CPU utilization. You could use it to troubleshoot your instance and find what's causing the high CPU utilization.

Distributed Resource Allocation Architecture

I am currently working on scaling a large scale infrastructure that involves distributing complex calculations over a calculation farm (Cluster with a limited number of machines). The current system is based on a service oriented architecture, whereby a limited number of services runs on each machine in the cluster.
The resources used (CPU, Memory) by each request sent these services vary widely depending on the content of the request, but may be known (or at least predicted) in advance. In other word, it is possible to know, for a given request, the following:
Time it will take to process the request. (Can vary from ms to minutes to sometimes hours)
Maximum memory required to process the request. (From a few MB to several GB)
Maximum number of cores required to process the request. (Mostly mono-threaded, but sometimes multi-threaded)
Our current architecture is problematic because our 'scheduler' does not take any of those parameters into account. Because of this, we often run into issues where one particular server is occupied by very expensive/'incompatible' requests (In terms of memory usage, CPU cores used, etc.), so processing each of them becomes widely inefficient, while other servers are occupied by relatively 'cheap' requests.
We would like to optimise this allocation process by moving our current infrastructure to a more modern orchestration system, such as Kubernetes (or other). The question I have at the moment is, given those requirements (Efficient distribution of requests with varying resource requirements - known before processing the request), what platforms currently available could be a good fit to optimise this type of workflow?
Thanks,
Jon
Kubernetes seems a good fit for that type of workload. Each request could be run as a Job which would run one or more containers to process the request. These containers can each request a minimum amount of resource they will require ahead of time in their specification and also specify a limit on these resources (e.g. maximum memory and maximum number of cores) and the Kubernetes scheduler can pick a node within the cluster that can satisfy and enforce these requirements.
This will allow you to forget about where the workloads are actually running and focus on making sure you just describe the requirements of each request accurately.

Azure Service Fabric reliable collections and memory

Let's say I'm running a Service Fabric cluster on 5 D1 class (1 core, 3.5GB RAM, 50GB SSD) VMs. and that I'm running 2 reliable services on this cluster, one stateless and one stateful. Let's assume that the replica target is 3.
How to calculate how much can my reliable collections hold?
Let's say I add one or more stateful services. Since I don't really know how the framework distributes services do I need to take most conservative approach and assume that a node may run all of my stateful services on a single node and that their cumulative memory needs to be below the RAM available on a single machine?
TLDR - Estimating the expected capacity of a cluster is part art, part science. You can likely get a good lower bound which you may be able to push higher, but for the most part deploying things, running them, and collecting data under your workload's conditions is the best way to answer this question.
1) In general, the collections on a given machine are bounded by the amount of available memory or the amount of available disk space on a node, whichever is lower. Today we keep all data in the collections in memory and also persist it to disk. So the maximum amount that your collections across the cluster can hold is generally (Amount of available memory in the cluster) / (Target Replica Set Size).
Note that "Available Memory" is whatever is left over from other code running on the machines, including the OS. In your above example though you're not running across all of the nodes - you'll only be able to get 3 of them. So, (unrealistically) assuming 0 overhead from these other factors, you could expect to be able to put about 3.5 GB of data into that stateful service replica before you ran out of memory on the nodes on which it was running. There would still be 2 nodes in the cluster left empty.
Let's take another example. Let's say that it is about the same as your example above, except in this case you set up the stateful service to be partitioned. Let's say you picked a partition count of 5. So now on each node, you have a primary replica and 2 secondary replicas from other partitions. In this case, each partition would only be able to hold a maximum of around 1.16 GB of state, but now overall you can pack 5.83 GB of state into the cluster (since all nodes can now be utilized fully). Incidentally, just to prove out the math works, that's (3.5 GB of memory per node * 5 nodes in the cluster) [17.5] / (target replica set size of 3) = 5.83.
In all of these examples, we've also assumed that memory consumption for all partitions and all replicas is the same. A lot of the time that turns out to not be true (at least temporarily) - some partitions can end up with more or less work to do and hence have uneven resource consumption. We also assumed that the secondaries were always the same as the primaries. In the case of the amount of state, it's probably fair to assume that these will track fairly evenly, though for other resource consumption it may not (just something to keep in mind). In the case of uneven consumption, this is really where the rest of Service Fabric's Cluster Resource Management will help, since we can come to know about the consumption of different replicas and pack them efficiently into the cluster to make use of the available space. Automatic reporting of consumption of resources related to state in the collections is on our radar and something we want to do, so in the future, this would be automatic but today you'd have to report this consumption on your own.
2) By default, we will balance the services according to the default metrics (more about metrics is here). So by default, the different replicas of those two different services could end up on the machine, but in your example, you'll end up with 4 nodes with 1 replica from a service on it and then 1 node with two replicas from the two different services. This means that each service (each with 1 partition as per your example) would only be able to consume 1.75 GB of memory in each service for a total of 3.5 GB in the cluster. This is again less than the total available memory of the cluster since there are some portions of nodes that you're not utilizing.
Note that this is the maximum possible consumption, and presuming no consumption outside the service itself. Taking this as your maximum is not advisable. You'll want to reduce it for several reasons, but the most practical reason is to ensure that in the presence of upgrades and failures that there's sufficient available capacity in the cluster. As an example, let's say that you have 5 Upgrade Domains and 5 Fault Domains. Now let's say that a fault domain's worth of nodes fails while you have an upgrade going on in an upgrade domain. This means that (a little less than) 40% of your cluster capacity can be gone at any time, and you probably want enough room left over on the remaining nodes to continue. This means that if your cluster previously could hold 5.83 GB of state (from our prior calculations), in reality you probably don't want to put more than about 3.5 GB of state in it since with more of that the service may not be able to get back to 100% healthy (note also that we don't build replacement replicas immediately so the nodes would have to be down for your ReplicaRestartWaitDuration before you ran into this case). There's a bunch more information about metrics, capacity, buffered capacity (which you can use to ensure that room is left on nodes for the failure cases) and fault and upgrade domains are covered in this article.
There are some other things that practically will limit the amount of state you'll be able to store. You'll want to do several things:
Estimate the size of your data. You can make a reasonable estimate up-front of how big your data is by calculating the size of each field your objects hold. Be sure to take into consideration 64-bit references. This will give you a lower-bound starting point.
Storage overhead. Each object you store in a collection will come with some overhead for storing that object. In the reliable collections depending on the collection and the operations currently in flight (copy, enumerations, updates, etc.) this overhead can range from between 100 and around 700 bytes per item (row) stored in the collections. Do know also that we're always looking for ways to reduce the amount of overhead we introduce.
We also strongly recommend running your service over some period of time and measuring actual resource consumption via performance counters. Simulating some sort of real workload and then measuring the actual usage of the metrics you care about will serve you pretty well. The reason we recommend this in particular is that you will be able to see consumption from things like which CLR object heap your objects end up placed in, how often GC is running, if there's leaks, or other things like this which will impact the amount of memory you can actually utilize.
I know that this has been a long answer but I hope you find it helpful and complete.