Mutating state in Purescript - purescript

I am just starting to learn Purescript so I hope that this is not a stupid question.
Suppose that we have an object
a = {x:1,y:2}
an we want to change x to equal 2. As far as I can see if we use the ST monad we will have to copy the whole object in order to change the value. If the initial object is big this would be very inefficient. What is the right way to mutate objects in place?

The ST monad is a fine approach, but depending on your use case, there may or may not be standard library functions for this.
The Data.StrMap module in purescript-maps defines a foreign type for homogeneous records with string keys, so if your values all have the same type, you could use Data.StrMap.ST to mutate your record in place.
If not, you should be easily able to define a function to update a record in place using ST and the FFI. The tricky bit is picking the right type. If you want to do something for a specific key, you could write a function
setFoo :: forall r a h eff. STRef h { foo :: a | r } -> a -> Eff (st :: ST h | eff) Unit
for example. Defining a generic setter would be more difficult without losing type safety. This is the trade-off made by Data.StrMap: you restrict yourself to a single value type, but get to use arbitrary keys.

Related

What is the advantage of Option/Maybe Monad over Functor?

I understand the advantage of IO monad and List Monad over Functor, however, I don't understand the advantage of Option/Maybe Monad over Functor.
Is that simply the integration of types of the language?
or
What is the advantage of Option/Maybe Monad over Functor in specific use?
PS. asking the advantage in specific use is not opinion-based because if there is, it can be pointed out without subjective aspect.
PS.PS. some member here is so eager to push repeatedly
Option is both a functor and a monad?
should be the answer, or QA is duplicate, but actually not.
I already know the basics such as
Every monad is an applicative functor and every applicative functor is a functor
as the accepted answer there, and that is not what I'm not asking here.
Having an excellent answer here that is Not included in the previous QA.
The aspect, detail, or resolution of each question is quite different, so please avoid "bundling" different things in rough manner here.
Let's look at the types.
fmap :: Functor f => (a -> b) -> (f a -> f b)
(<*>) :: Applicative f => f (a -> b) -> (f a -> f b)
flip (>>=) :: Monad f => (a -> f b) -> (f a -> f b)
For a functor, we can apply an ordinary function a -> b to a value of type f a to get a value of type f b. The function never gets a say in what happens to the f part, only the inside. Thinking of functors as sort of box-like things, the function in fmap never sees the box itself, just the inside, and the value gets taken out and put back into the exact same box it started at.
An applicative functor is slightly more powerful. Now, we have a function which is also in a box. So the function gets a say in the f part, in a limited sense. The function and the input each have f parts (which are independent of each other) which get combined into the result.
A monad is even more powerful. Now, the function does not, a priori, have an f part. The function takes a value and produces a new box. Whereas in the Applicative case, our function's box and our value's box were independent, in the Monad case, the function's box can depend on the input value.
Now, what's all this mean? You've asked me to focus on Maybe, so let's talk about Maybe in the concrete.
fmap :: (a -> b) -> (Maybe a -> Maybe b)
(<*>) :: Maybe (a -> b) -> (Maybe a -> Maybe b)
flip (>>=) :: (a -> Maybe b) -> (Maybe a -> Maybe b)
As a reminder, Maybe looks like this.
data Maybe a = Nothing | Just a
A Maybe a is a value which may or may not exist. From a functor perspective, we'll generally think of Nothing as some form of failure and Just a as a successful result of type a.
Starting with fmap, the Functor instance for Maybe allows us to apply a function to the inside of the Maybe, if one exists. The function gets no say over the success or failure of the operation: A failed Maybe (i.e. a Nothing) must remain failed, and a successful one must remain successful (obviously, we're glossing over undefined and other denotational semantic issues here; I'm assuming that the only way a function can fail is with Nothing).
Now (<*>), the applicative operator, takes a Maybe (a -> b) and a Maybe a. Either of those two might have failed. If either of them did, then the result is Nothing, and only if the two both succeeded do we get a Just as our result. This allows us to curry operations. Concretely, if I have a function of the form g :: a -> b -> c and I have values ma :: Maybe a and mb :: Maybe b, then we might want to apply g to ma and mb. But when we start to do that, we have a problem.
fmap g ma :: Maybe (b -> c)
Now we've got a function that may or may not exist. We can't fmap that over mb, because a nonexistent function (a Nothing) can't be an argument to fmap. The problem is that we have two independent Maybe values (ma and mb in our example) which are fighting, in some sense, for control. The result should only exist if both are Just. Otherwise, the result should be Nothing. It's sort of a Boolean "and" operation, in that if any of the intermediates fail, then the whole calculation fails. (Note: If you're looking for a Boolean "or", where any individual success can recover from prior failure, then you're looking for Alternative)
So we write
(fmap g ma) <*> mb :: Maybe c
or, using the more convenient synonym Haskell provides for this purpose,
g <$> ma <*> mb :: Maybe c
Now, the key word in the above situation is independent. ma and mb have no say over the other's success or failure. This is good in many cases, because code like this can often be parallelized (there are very efficient command line argument parsing libraries that exploit just this property of Applicative). But, obviously, it's not always what we want.
Enter Monad. In the Maybe monad, the provided function produces a value of type Maybe b based on the input a. The Maybe part of the a and of the b are no longer independent: the latter can depend directly on the former.
For example, take the classic example of Maybe: a square root function. We can't take a square root of a negative number (let's assume we're not working with complex numbers here), so our hypothetical square root looks like
sqrt :: Double -> Maybe Double
sqrt x | x < 0 = Nothing
| otherwise = Just (Prelude.sqrt x)
Now, suppose we've got some number r. But r isn't just a number. It came from earlier in our computation, and our computation might have failed. Maybe it did a square root earlier, or tried to divide by zero, or something else entirely, but it did something that has some chance of producing a Nothing. So r is Maybe Double, and we want to take its square root.
Obviously, if r is already Nothing, then its square root is Nothing; we can't possibly take a square root if we've already failed to compute everything else. On the other hand, if r is a negative number, then sqrt is going to fail and produce Nothing despite the fact that r is itself Just. So what we really want is
case r of
Nothing -> Nothing
Just r' -> sqrt r'
And this is exactly what the Monad instance for Maybe does. That code is equivalent to
r >>= sqrt
The result of this entire computation (and, namely, whether or not it is Nothing or Just) depends not just on whether or not r is Nothing but also on r's actual value. Two different Just values of r can produce success or failure depending on what sqrt does. We can't do that with just a Functor, we can't even do that with Applicative. It takes a Monad.

What does the pipe character (|) mean when part of a purescript type signature?

I've been unable to figure this out exactly from reading the available docs.
On the record section of the Type docs, it seems to have to do with Row Polymorphism, but I don't understand it's general usage. What does it mean when there is a type signature with a | symbol?
For example:
class Monad m <= MonadTell w m | m -> w where
tell :: w -> m Unit
The pipe in PureScript is not used "generally". There are multiple uses of it depending on the context. One, as you mentioned, is for type row combinations. Another is for function guards.
The specific syntax you're quoting is called "functional dependency". It is a property of a multi-parameter type class, and it specifies that some variables must be unambiguously determined by others.
In this particular case, the syntax means "for every m there can be only one w".
Or, in plainer language, a given m cannot be MonadTell for several different ws.
Functional dependencies show up in many other places. For example:
-- For every type `a` there is only one generic representation `rep`
class Generic a rep | a -> rep where
-- Every newtype `t` wraps only one unique inner type `a`
class Newtype t a | t -> a where

What's the difference between a lens and a partial lens?

A "lens" and a "partial lens" seem rather similar in name and in concept. How do they differ? In what circumstances do I need to use one or the other?
Tagging Scala and Haskell, but I'd welcome explanations related to any functional language that has a lens library.
To describe partial lenses—which I will henceforth call, according to the Haskell lens nomenclature, prisms (excepting that they're not! See the comment by Ørjan)—I'd like to begin by taking a different look at lenses themselves.
A lens Lens s a indicates that given an s we can "focus" on a subcomponent of s at type a, viewing it, replacing it, and (if we use the lens family variation Lens s t a b) even changing its type.
One way to look at this is that Lens s a witnesses an isomorphism, an equivalence, between s and the tuple type (r, a) for some unknown type r.
Lens s a ====== exists r . s ~ (r, a)
This gives us what we need since we can pull the a out, replace it, and then run things back through the equivalence backward to get a new s with out updated a.
Now let's take a minute to refresh our high school algebra via algebraic data types. Two key operations in ADTs are multiplication and summation. We write the type a * b when we have a type consisting of items which have both an a and a b and we write a + b when we have a type consisting of items which are either a or b.
In Haskell we write a * b as (a, b), the tuple type. We write a + b as Either a b, the either type.
Products represent bundling data together, sums represent bundling options together. Products can represent the idea of having many things only one of which you'd like to choose (at a time) whereas sums represent the idea of failure because you were hoping to take one option (on the left side, say) but instead had to settle for the other one (along the right).
Finally, sums and products are categorical duals. They fit together and having one without the other, as most PLs do, puts you in an awkward place.
So let's take a look at what happens when we dualize (part of) our lens formulation above.
exists r . s ~ (r + a)
This is a declaration that s is either a type a or some other thing r. We've got a lens-like thing that embodies the notion of option (and of failure) deep at it's core.
This is exactly a prism (or partial lens)
Prism s a ====== exists r . s ~ (r + a)
exists r . s ~ Either r a
So how does this work concerning some simple examples?
Well, consider the prism which "unconses" a list:
uncons :: Prism [a] (a, [a])
it's equivalent to this
head :: exists r . [a] ~ (r + (a, [a]))
and it's relatively obvious what r entails here: total failure since we have an empty list!
To substantiate the type a ~ b we need to write a way to transform an a into a b and a b into an a such that they invert one another. Let's write that in order to describe our prism via the mythological function
prism :: (s ~ exists r . Either r a) -> Prism s a
uncons = prism (iso fwd bck) where
fwd [] = Left () -- failure!
fwd (a:as) = Right (a, as)
bck (Left ()) = []
bck (Right (a, as)) = a:as
This demonstrates how to use this equivalence (at least in principle) to create prisms and also suggests that they ought to feel really natural whenever we're working with sum-like types such as lists.
A lens is a "functional reference" that allows you to extract and/or update a generalized "field" in a larger value. For an ordinary, non-partial lens that field is always required to be there, for any value of the containing type. This presents a problem if you want to look at something like a "field" which might not always be there. For example, in the case of "the nth element of a list" (as listed in the Scalaz documentation #ChrisMartin pasted), the list might be too short.
Thus, a "partial lens" generalizes a lens to the case where a field may or may not always be present in a larger value.
There are at least three things in the Haskell lens library that you could think of as "partial lenses", none of which corresponds exactly to the Scala version:
An ordinary Lens whose "field" is a Maybe type.
A Prism, as described by #J.Abrahamson.
A Traversal.
They all have their uses, but the first two are too restricted to include all cases, while Traversals are "too general". Of the three, only Traversals support the "nth element of list" example.
For the "Lens giving a Maybe-wrapped value" version, what breaks is the lens laws: to have a proper lens, you should be able to set it to Nothing to remove the optional field, then set it back to what it was, and then get back the same value. This works fine for a Map say (and Control.Lens.At.at gives such a lens for Map-like containers), but not for a list, where deleting e.g. the 0th element cannot avoid disturbing the later ones.
A Prism is in a sense a generalization of a constructor (approximately case class in Scala) rather than a field. As such the "field" it gives when present should contain all the information to regenerate the whole structure (which you can do with the review function.)
A Traversal can do "nth element of a list" just fine, in fact there are at least two different functions ix and element that both work for this (but generalize slightly differently to other containers).
Thanks to the typeclass magic of lens, any Prism or Lens automatically works as a Traversal, while a Lens giving a Maybe-wrapped optional field can be turned into a Traversal of a plain optional field by composing with traverse.
However, a Traversal is in some sense too general, because it is not restricted to a single field: A Traversal can have any number of "target" fields. E.g.
elements odd
is a Traversal that will happily go through all the odd-indexed elements of a list, updating and/or extracting information from them all.
In theory, you could define a fourth variant (the "affine traversals" #J.Abrahamson mentions) that I think might correspond more closely to Scala's version, but due to a technical reason outside the lens library itself they would not fit well with the rest of the library - you would have to explicitly convert such a "partial lens" to use some of the Traversal operations with it.
Also, it would not buy you much over ordinary Traversals, since there's e.g. a simple operator (^?) to extract just the first element traversed.
(As far as I can see, the technical reason is that the Pointed typeclass which would be needed to define an "affine traversal" is not a superclass of Applicative, which ordinary Traversals use.)
Scalaz documentation
Below are the scaladocs for Scalaz's LensFamily and PLensFamily, with emphasis added on the diffs.
Lens:
A Lens Family, offering a purely functional means to access and retrieve a field transitioning from type B1 to type B2 in a record simultaneously transitioning from type A1 to type A2. scalaz.Lens is a convenient alias for when A1 =:= A2, and B1 =:= B2.
The term "field" should not be interpreted restrictively to mean a member of a class. For example, a lens family can address membership of a Set.
Partial lens:
Partial Lens Families, offering a purely functional means to access and retrieve an optional field transitioning from type B1 to type B2 in a record that is simultaneously transitioning from type A1 to type A2. scalaz.PLens is a convenient alias for when A1 =:= A2, and B1 =:= B2.
The term "field" should not be interpreted restrictively to mean a member of a class. For example, a partial lens family can address the nth element of a List.
Notation
For those unfamiliar with scalaz, we should point out the symbolic type aliases:
type #>[A, B] = Lens[A, B]
type #?>[A, B] = PLens[A, B]
In infix notation, this means the type of a lens that retrieves a field of type B from a record of type A is expressed as A #> B, and a partial lens as A #?> B.
Argonaut
Argonaut (a JSON library) provides a lot of examples of partial lenses, because the schemaless nature of JSON means that attempting to retrieve something from an arbitrary JSON value always has the possibility of failure. Here are a few examples of lens-constructing functions from Argonaut:
def jArrayPL: Json #?> JsonArray — Retrieves a value only if the JSON value is an array
def jStringPL: Json #?> JsonString — Retrieves a value only if the JSON value is a string
def jsonObjectPL(f: JsonField): JsonObject #?> Json — Retrieves a value only if the JSON object has the field f
def jsonArrayPL(n: Int): JsonArray #?> Json — Retrieves a value only if the JSON array has an element at index n

How do you use the class method for Data.Function.Memoize?

I am working on an NP search problem and was told I can speed up the search process by using said package. Since memoisation is a new concept to me, I find it hard to wrap my head around anything other than the 'standard' memoised Fibonacci sequence.
In order to instantiate a data type 'a' as Memoizable I need to define a function memoize (:: (a-> v) -> a -> v) on it.
I have a Datatype data Formula which is in the classes (Eq, Ord, Show). I will have to define my own instance declaration, but don't know what function is expected.
What exactly is this function supposed to define for memoisation to work? The package description doesn't elaborate on this, and I doubt function application (which fits the type signature) will speed anything up.
You should read about typeclasses. Here is how I understand the package.
The following definition is given:
class Memoizable a where
memoize ∷ (a → v) → a → v
You should think of the memoize function as something like:
memoize :: (Memoize a) => (a → v) → a → v
Ie: you can apply it to a function from a to v iif an instance of Memoize a is declared. The package declare instances for some basic types like Int
So if you wish to memoize compute :: Int -> WidgetData, you shoud use memoize compute which has the same type without doing anything.
If you wish to memoize a function which takes as input a type without a Memoize instance, you will have to declare it yourself. More likely, you should rely on the template functions like deriveMemoizable to do that for you:
{-# LANGUAGE TemplateHaskell #-} -- put this at the top
deriveMemoizable ''T
I doubt function application (which fits the type signature) will
speed anything up.
It depends of the problem at hands. If compute is expensive, and you call it twice with the same input, it will store the results and avoid computing them twice. If it is not the case, you will increase the memory usage of your program without any gain.

Sets, Functors and Eq confusion

A discussion came up at work recently about Sets, which in Scala support the zip method and how this can lead to bugs, e.g.
scala> val words = Set("one", "two", "three")
scala> words zip (words map (_.length))
res1: Set[(java.lang.String, Int)] = Set((one,3), (two,5))
I think it's pretty clear that Sets shouldn't support a zip operation, since the elements are not ordered. However, it was suggested that the problem is that Set isn't really a functor, and shouldn't have a map method. Certainly, you can get yourself into trouble by mapping over a set. Switching to Haskell now,
data AlwaysEqual a = Wrap { unWrap :: a }
instance Eq (AlwaysEqual a) where
_ == _ = True
instance Ord (AlwaysEqual a) where
compare _ _ = EQ
and now in ghci
ghci> import Data.Set as Set
ghci> let nums = Set.fromList [1, 2, 3]
ghci> Set.map unWrap $ Set.map Wrap $ nums
fromList [3]
ghci> Set.map (unWrap . Wrap) nums
fromList [1, 2, 3]
So Set fails to satisfy the functor law
fmap f . fmap g = fmap (f . g)
It can be argued that this is not a failing of the map operation on Sets, but a failing of the Eq instance that we defined, because it doesn't respect the substitution law, namely that for two instances of Eq on A and B and a mapping f : A -> B then
if x == y (on A) then f x == f y (on B)
which doesn't hold for AlwaysEqual (e.g. consider f = unWrap).
Is the substition law a sensible law for the Eq type that we should try to respect? Certainly, other equality laws are respected by our AlwaysEqual type (symmetry, transitivity and reflexivity are trivially satisfied) so substitution is the only place that we can get into trouble.
To me, substition seems like a very desirable property for the Eq class. On the other hand, some comments on a recent Reddit discussion include
"Substitution seems stronger than necessary, and is basically quotienting the type, putting requirements on every function using the type."
-- godofpumpkins
"I also really don't want substitution/congruence since there are many legitimate uses for values which we want to equate but are somehow distinguishable."
-- sclv
"Substitution only holds for structural equality, but nothing insists Eq is structural."
-- edwardkmett
These three are all pretty well known in the Haskell community, so I'd be hesitant to go against them and insist on substitability for my Eq types!
Another argument against Set being a Functor - it is widely accepted that being a Functor allows you to transform the "elements" of a "collection" while preserving the shape. For example, this quote on the Haskell wiki (note that Traversable is a generalization of Functor)
"Where Foldable gives you the ability to go through the structure processing the elements but throwing away the shape, Traversable allows you to do that whilst preserving the shape and, e.g., putting new values in."
"Traversable is about preserving the structure exactly as-is."
and in Real World Haskell
"...[A] functor must preserve shape. The structure of a collection should not be affected by a functor; only the values that it contains should change."
Clearly, any functor instance for Set has the possibility to change the shape, by reducing the number of elements in the set.
But it seems as though Sets really should be functors (ignoring the Ord requirement for the moment - I see that as an artificial restriction imposed by our desire to work efficiently with sets, not an absolute requirement for any set. For example, sets of functions are a perfectly sensible thing to consider. In any case, Oleg has shown how to write efficient Functor and Monad instances for Set that don't require an Ord constraint). There are just too many nice uses for them (the same is true for the non-existant Monad instance).
Can anyone clear up this mess? Should Set be a Functor? If so, what does one do about the potential for breaking the Functor laws? What should the laws for Eq be, and how do they interact with the laws for Functor and the Set instance in particular?
Another argument against Set being a Functor - it is widely accepted that being a Functor allows you to transform the "elements" of a "collection" while preserving the shape. [...] Clearly, any functor instance for Set has the possibility to change the shape, by reducing the number of elements in the set.
I'm afraid that this is a case of taking the "shape" analogy as a defining condition when it is not. Mathematically speaking, there is such a thing as the power set functor. From Wikipedia:
Power sets: The power set functor P : Set → Set maps each set to its power set and each function f : X → Y to the map which sends U ⊆ X to its image f(U) ⊆ Y.
The function P(f) (fmap f in the power set functor) does not preserve the size of its argument set, yet this is nonetheless a functor.
If you want an ill-considered intuitive analogy, we could say this: in a structure like a list, each element "cares" about its relationship to the other elements, and would be "offended" if a false functor were to break that relationship. But a set is the limiting case: a structure whose elements are indifferent to each other, so there is very little you can do to "offend" them; the only thing is if a false functor were to map a set that contains that element to a result that doesn't include its "voice."
(Ok, I'll shut up now...)
EDIT: I truncated the following bits when I quoted you at the top of my answer:
For example, this quote on the Haskell wiki (note that Traversable is a generalization of Functor)
"Where Foldable gives you the ability to go through the structure processing the elements but throwing away the shape, Traversable allows you to do that whilst preserving the shape and, e.g., putting new values in."
"Traversable is about preserving the structure exactly as-is."
Here's I'd remark that Traversable is a kind of specialized Functor, not a "generalization" of it. One of the key facts about any Traversable (or, actually, about Foldable, which Traversable extends) is that it requires that the elements of any structure have a linear order—you can turn any Traversable into a list of its elements (with Foldable.toList).
Another, less obvious fact about Traversable is that the following functions exist (adapted from Gibbons & Oliveira, "The Essence of the Iterator Pattern"):
-- | A "shape" is a Traversable structure with "no content,"
-- i.e., () at all locations.
type Shape t = t ()
-- | "Contents" without a shape are lists of elements.
type Contents a = [a]
shape :: Traversable t => t a -> Shape t
shape = fmap (const ())
contents :: Traversable t => t a -> Contents a
contents = Foldable.toList
-- | This function reconstructs any Traversable from its Shape and
-- Contents. Law:
--
-- > reassemble (shape xs) (contents xs) == Just xs
--
-- See Gibbons & Oliveira for implementation. Or do it as an exercise.
-- Hint: use the State monad...
--
reassemble :: Traversable t => Shape t -> Contents a -> Maybe (t a)
A Traversable instance for sets would violate the proposed law, because all non-empty sets would have the same Shape—the set whose Contents is [()]. From this it should be easy to prove that whenever you try to reassemble a set you would only ever get the empty set or a singleton back.
Lesson? Traversable "preserves shape" in a very specific, stronger sense than Functor does.
Set is "just" a functor (not a Functor) from the subcategory of Hask where Eq is "nice" (i.e. the subcategory where congruence, substitution, holds). If constraint kinds were around from way back then perhaps set would be a Functor of some kind.
Well, Set can be treated as a covariant functor, and as a contravariant functor; usually it's a covariant functor. And for it to behave regarding equality one has to make sure that whatever the implementation, it does.
Regarding Set.zip - it is nonsense. As well as Set.head (you have it in Scala). It should not exist.