I'm stuck with aggregation in mongodb. The premise is I have to get data for particular ads within a time range.
So suppose I query for ads within a range of 22nd April to 24th April, here is what I should get, summation of spend from source2, and revenue, session, bounces etc from source1.
[{ "_id" : ObjectId("560bbd5dfabc614611000e95"),
"spend": 470,
"revenue": 440,
"sessions": 3
},....
]
Here is the query, I was attempting which gives me correct data but takes really long - 24seconds for only 22k entires.
db.getCollection('tests').aggregate([{
$match: {
ad_account_id: 40
}
}, {
"$unwind": "$source1"
}, {
"$unwind": "$source2"
}, {
"$group": {
"_id": "$internal_id",
"transactionrevenue": {
"$sum": {
"$cond": [{
"$and": [{
"$gte": [
"$source1.created_at", ISODate("2015-04-22T00:00:00.000Z")
]
}, {
"$lte": [
"$source1.created_at", ISODate("2015-04-25T00:00:00.000Z")
]
}]
}, "$source1.transactionrevenue", 0]
}
},
"sessions": {
"$sum": {
"$cond": [{
"$and": [{
"$gte": [
"$source1.created_at", ISODate("2015-04-22T00:00:00.000Z")
]
}, {
"$lte": [
"$source1.created_at", ISODate("2015-04-25T00:00:00.000Z")
]
}]
}, "$source1.sessions", 0]
}
},
"spend": {
"$sum": {
"$cond": [{
"$and": [{
"$gte": [
"$source2.created_at", ISODate("2015-04-22T00:00:00.000Z")
]
}, {
"$lte": [
"$source2.created_at", ISODate("2015-04-25T00:00:00.000Z")
]
}]
}, "$source2.spend", 0]
}
}
},
}]);
Problems are how to unwind multiple times, how to get summation of multiple things in source1 and not having to do aggregation again and again? It takes 24seconds, for 22 entries....Please suggest on what I should index (I have none), and also if document size of average 4mb suggests there is something wrong with the schema?
Would map reduce be better even though aggregation is usually considered faster in mongodb?
If you think the document design is wrong, I'm all ears, as we're just working on the migration. Much better to correct things now, rather than later.
Here is a sample document
{
"_id" : ObjectId("560bbd5dfabc614611000e95"),
"internal_id": 1,
"created_at" : ISODate("2015-04-21T00:50:02.593Z"),
"updated_at" : ISODate("2015-09-15T12:20:39.154Z"),
"name" : "LookalikeUSApr21_06h19m",
"ad_account_id" : 40,
"targeting" : {
"age_max" : 44,
"age_min" : 35,
"genders" : [
1
],
"page_types" : [
"desktopfeed"
]
},
"auto_optimization" : false,
"source1" : [
{
"id" : 119560952,
"created_at" : ISODate("2015-04-23T12:35:09.467Z"),
"updated_at" : ISODate("2015-05-19T05:20:58.374Z"),
"transactionrevenue" : 320,
"sessions" : 1,
"bounces" : 1
},
{
"id" : 119560955,
"created_at" : ISODate("2015-05-01T12:35:09.467Z"),
"updated_at" : ISODate("2015-05-19T05:20:58.374Z"),
"transactionrevenue" : 230,
"sessions" : 10,
"bounces" : 1
},
{
"id" : 119560954,
"created_at" : ISODate("2015-04-23T10:35:09.467Z"),
"updated_at" : ISODate("2015-05-19T05:20:58.374Z"),
"transactionrevenue" : 120,
"sessions" : 2,
"bounces" : 1
},
{
"id" : 119560953,
"created_at" : ISODate("2015-04-25T12:35:09.467Z"),
"updated_at" : ISODate("2015-05-19T05:20:58.374Z"),
"transactionrevenue" : 100,
"sessions" : 3,
"bounces" : 2
}
],
"source2" : [
{
"id" : 219560952,
"created_at" : ISODate("2015-04-22T12:35:09.467Z"),
"updated_at" : ISODate("2015-05-19T05:20:58.374Z"),
"spend" : 300
},
{
"id" : 219560955,
"created_at" : ISODate("2015-04-23T12:35:09.467Z"),
"updated_at" : ISODate("2015-05-19T05:20:58.374Z"),
"spend" : 170
},
{
"id" : 219560954,
"created_at" : ISODate("2015-04-25T10:35:09.467Z"),
"updated_at" : ISODate("2015-05-19T05:20:58.374Z"),
"spend" : 450
}
]
}
The very first thing you should be doing is adding an index to both the source1 and source2 arrays for their "created_at" field. You will likely reduce a lot of possible results and improve speed greatly by simply querying for these possible matches being present in the documents you select.
The next main improvements are to combine the arrays and filter as one, and notably before you process $unwind. This is going to save a lot of cycles and document expansion in the arrays.
Moreover, it's going to give you the correct totals. When you $unwind two arrays, then one array's details get repeated by the number of items in the second array. This gives you incorrect results for the array content that you "unwound" first. You can always do each separately, but it's far better to merge them into one:
db.getCollection('tests').aggregate([
{ "$match": {
"ad_account_id": 40,
"$or": [
{
"source1": {
"$elemMatch": {
"created_at": {
"$gte": new Date("2015-04-22"),
"$lte": new Date("2015-04-25")
}
}
}
},
{
"source2": {
"$elemMatch": {
"created_at": {
"$gte": new Date("2015-04-22"),
"$lte": new Date("2015-04-25")
}
}
}
}
]
}},
{ "$project": {
"_id": 0,
"internal_id": 1,
"source": {
"$setDifference": [
{ "$map": {
"input": { "$setUnion": [ "$source1", "$source2" ] },
"as": "source",
"in": {
"$cond": [
{ "$and": [
{ "$gte": [ "$$source.created_at", new Date("2015-04-22") ] },
{ "$lte": [ "$$source.created_at", new Date("2015-04-25") ] }
]},
"$$source",
false
]
}
}},
[false]
]
}
}},
{ "$unwind": "$source"},
{ "$group": {
"_id": "$internal_id",
"transactionrevenue": { "$sum": { "$ifNull": [ "$source.transactionrevenue", 0 ] } },
"sessions": { "$sum": { "$ifNull": [ "$source.sessions", 0 ] } },
"spend": { "$sum": { "$ifNull": [ "$source.spend", 0 ] } }
}}
])
Which is going to give the result on your sample:
{ "_id" : 1, "transactionrevenue" : 440, "sessions" : 3, "spend" : 470 }
So probably the great big architecture hint in what is being done here it that it would be very wise to to combine the arrays into a single array in your general application usage. You can always add another field for "type" if you must to discern between the two different types of items, but just about all processing should benefit from a singular array.
The main lesson for the query aside from that, is that you always $match first to filter out as much content as possible. Whilst the initial $match stage cannot of course remove items from arrays that do not meet the conditions, what it can importantly do is "match the documents". because you do not want to process documents that don't have that information at all. That always adds time.
The second part other than the combined array is that basically you want to filter out any content before unwinding the array where possible for much the same reasons, as you don't want to be processing items you don't need to.
Short lesson, filter first to reduce what you are processing. Conditional sums are fine, but really only should be used for selection of content and not raw filtering. It's basically about getting rid of the undesired data first rather than just ignoring it. Process less and do it faster.
Related
I am trying to calculate the percentage of listings in a MongoDB that contain a specific word grouped by a collection's object.
I have managed to group the count of listings containing the word but not the percentage on the total count of each group's listings.
My collection looks like this:
{
"_id" : "103456",
"metadata" : {
"type" : "Bike",
"brand" : "Siamoto",
"model" : "Siamoto vespa '01 - € 550 EUR (Negotiable)"
}
},
{
"_id" : "103457",
"metadata" : {
"type" : "Bike",
"brand" : "BMW",
"model" : "BMW ADFR '06 - € 5680 EUR"
}
}
I want to project the percentage of ads per metadata.brand that contain the word "Negotiable" in metadata.model.
I have used for the count something like:
db.advertisements.aggregate([
{ $match: { $text: { $search: "Negotiable" } } },
{ $group: { _id: "$metadata.brand", Count: { $sum: 1} } }
])
and it worked but I can't find a workaround for the percentage. Thanks to all
For what you are trying to do, using a $text search or even a $regex is the wrong approach. All these can do is return the "matching" documents only from within the collection.
Using Aggregate to Count String Matches
Whist not as flexible as a regular expression ( and sadly there is no aggregation operator equivalent at this time, but there will be in future releases. See SERVER-11947 ) the better option is to use $indexOfCP in order to match the occurrence of the "string" and then count those against the "total counts" from each grouping:
db.advertisements.aggregate([
{ "$group": {
"_id": "$metadata.brand",
"totalCount": { "$sum": 1 },
"matchedCount": {
"$sum": {
"$cond": [{ "$ne": [{ "$indexOfCP": [ "$metadata.model", "Negotiable" ] }, -1 ] }, 1, 0]
}
}
}},
{ "$addFields": {
"percentage": {
"$cond": {
"if": { "$ne": [ "$matchedCount", 0 ] },
"then": {
"$multiply": [
{ "$divide": [ "$matchedCount", "$totalCount" ] },
100
]
},
"else": 0
}
}
}},
{ "$sort": { "percentage": -1 } }
])
And the results:
{ "_id" : "Siamoto", "totalCount" : 1, "matchedCount" : 1, "percentage" : 100 }
{ "_id" : "BMW", "totalCount" : 1, "matchedCount" : 0, "percentage" : 0 }
Note that the $group is used for the accumulation of both the total documents found within the "brand" as well as those where the string was matched. The $cond operator used here is a "ternary" or if/then/else statement which evaluates a boolean expression and then returns either one value where true or another where false. In this case the $indexOfCP NOT returning the -1 value or "not found".
The "percentage" is actually done in a separate stage, which in this case we use $addFields to add the "additional field". The operation is basically a $divide over the two accumulated values from the previous stage. The $cond is just applied to avoid "divide by 0" errors and the $multiply is just moving the decimal places into something that looks more like a "percentage". But the basic premise is such calculations which require "totals" to be accumulated first will always be a manipulation in a "later stage".
MongoDB 4.2 (proposed) Preview
FYI, on the current "unfinalized" syntax for $regexFind from MongoDB 4.2 (proposed, and yet to be finalized if included in that release ) and onwards this would be something like:
db.advertisements.aggregate([
{ "$group": {
"_id": "$metadata.brand",
"totalCount": { "$sum": 1 },
"matchedCount": {
"$sum": {
"$cond": {
"if": {
"$ne": [
{ "$regexFind": {
"input": "$metadata.model",
"regex": /Negotiable/i
}},
null
]
},
"then": 1,
"else": 0
}
}
}
}},
{ "$addFields": {
"percentage": {
"$cond": {
"if": { "$ne": [ "$matchedCount", 0 ] },
"then": {
"$multiply": [
{ "$divide": [ "$matchedCount", "$totalCount" ] },
100
]
},
"else": 0
}
}
}},
{ "$sort": { "percentage": -1 } }
])
Again noting strongly that the "current" implementation may be subject to change by the time it is released. This is how it works on the current 4.1.9-17-g0a856820ba development release.
Using MapReduce
An alternate approach where either your MongoDB version does not support $indexOfCP OR you need more flexibility in how you "match the string" is to use mapReduce for the aggregation instead:
db.advertisements.mapReduce(
function() {
emit(this.metadata.brand, {
totalCount: 1,
matchedCount: (/Negotiable/i.test(this.metadata.model)) ? 1 : 0
});
},
function(key,values) {
var obj = { totalCount: 0, matchedCount: 0 };
values.forEach(value => {
obj.totalCount += value.totalCount;
obj.matchedCount += value.matchedCount;
});
return obj;
},
{
"out": { "inline": 1 },
"finalize": function(key,value) {
value.percentage = (value.matchedCount != 0)
? (value.matchedCount / value.totalCount) * 100
: 0;
return value;
}
}
)
This has a similar result, but in a very "mapReduce" specific way:
{
"_id" : "BMW",
"value" : {
"totalCount" : 1,
"matchedCount" : 0,
"percentage" : 0
}
},
{
"_id" : "Siamoto",
"value" : {
"totalCount" : 1,
"matchedCount" : 1,
"percentage" : 100
}
}
The logic is pretty much the same. We "emit" using the "key" for the "brand" and then use another ternary to determine whether to count a "match" or not. In this case a regular expression test() operation, and even using "case insensitive" matching as an example.
The "reducer" part simply accumulates the values that were emitted, and the finalize function is where the "percentage" is returned by the same division and multiplication process.
The main difference between the two other than basic capabilities is that the mapReduce cannot do "further things" beyond the accumulation and basic manipulation in the finalize. The "sorting" demonstrated in the aggregation pipeline cannot be done with mapReduce without outputting to a separate collection and doing a separate find() and sort() on those documents contained.
Either way works, and it just depends on your needs and the capabilities of what you have available. Of course any aggregate() approach will be much faster than using the JavaScript evaluation of mapReduce. So you probably want aggregate() as your preference where possible.
I have documents stored into MongoDB like this :
{
"_id" : "XBpNKbdGSgGfnC2MJ",
"po" : 72134185,
"machine" : 40940,
"location" : "02A01",
"inDate" : ISODate("2017-07-19T06:10:13.059Z"),
"requestDate" : ISODate("2017-07-19T06:17:04.901Z"),
"outDate" : ISODate("2017-07-19T06:30:34Z")
}
And I want give the sum, by day, of inDate and outDate.
I can retrieve of both side the sum of documents by inDate day and, on other side, the sum of documents by outDate, but I would like the sum of each.
Currently, I use this pipeline :
$group: {
_id: {
yearA: { $year: '$inDate' },
monthA: { $month: '$inDate' },
dayA: { $dayOfMonth: '$inDate' },
},
count: { $sum: 1 },
},
and I give :
{ "_id" : { "year" : 2017, "month" : 7, "day" : 24 }, "count" : 1 }
{ "_id" : { "year" : 2017, "month" : 7, "day" : 21 }, "count" : 11 }
{ "_id" : { "year" : 2017, "month" : 7, "day" : 19 }, "count" : 20 }
But I would like, if it's possible :
{ "_id" : { "year" : 2017, "month" : 7, "day" : 24 }, "countIn" : 1, "countOut" : 4 }
{ "_id" : { "year" : 2017, "month" : 7, "day" : 21 }, "countIn" : 11, "countOut" : 23 }
{ "_id" : { "year" : 2017, "month" : 7, "day" : 19 }, "countIn" : 20, "countOut" : 18 }
Any idea ?
Many thanks :-)
You can also split the documents at the source, by essentially combining each value into an array of entries by "type" for "in" and "out". You can do this simply using $map and $cond to select the fields, then $unwind the array and then determine which field to "count" again by inspecting with $cond:
collection.aggregate([
{ "$project": {
"dates": {
"$filter": {
"input": {
"$map": {
"input": [ "in", "out" ],
"as": "type",
"in": {
"type": "$$type",
"date": {
"$cond": {
"if": { "$eq": [ "$$type", "in" ] },
"then": "$inDate",
"else": "$outDate"
}
}
}
}
},
"as": "dates",
"cond": { "$ne": [ "$$dates.date", null ] }
}
}
}},
{ "$unwind": "$dates" },
{ "$group": {
"_id": {
"year": { "$year": "$dates.date" },
"month": { "$month": "$dates.date" },
"day": { "$dayOfMonth": "$dates.date" }
},
"countIn": {
"$sum": {
"$cond": {
"if": { "$eq": [ "$dates.type", "in" ] },
"then": 1,
"else": 0
}
}
},
"countOut": {
"$sum": {
"$cond": {
"if": { "$eq": [ "$dates.type", "out" ] },
"then": 1,
"else": 0
}
}
}
}}
])
That's a safe way to do this that does not risk breaking the BSON limit, no matter what size of data you send at it.
Personally I would rather run as separate processes and "combine" the aggregated results separately, but that would depend on the environment you are running in, which is not mentioned in the question.
For an example of "parallel" execution, you can structure in Meteor somewhere along these lines:
import { Meteor } from 'meteor/meteor';
import { Source } from '../imports/source';
import { Target } from '../imports/target';
Meteor.startup(async () => {
// code to run on server at startup
await Source.remove({});
await Target.remove({});
console.log('Removed');
Source.insert({
"_id" : "XBpNKbdGSgGfnC2MJ",
"po" : 72134185,
"machine" : 40940,
"location" : "02A01",
"inDate" : new Date("2017-07-19T06:10:13.059Z"),
"requestDate" : new Date("2017-07-19T06:17:04.901Z"),
"outDate" : new Date("2017-07-19T06:30:34Z")
});
console.log('Inserted');
await Promise.all(
["In","Out"].map( f => new Promise((resolve,reject) => {
let cursor = Source.rawCollection().aggregate([
{ "$match": { [`${f.toLowerCase()}Date`]: { "$exists": true } } },
{ "$group": {
"_id": {
"year": { "$year": `$${f.toLowerCase()}Date` },
"month": { "$month": `$${f.toLowerCase()}Date` },
"day": { "$dayOfYear": `$${f.toLowerCase()}Date` }
},
[`count${f}`]: { "$sum": 1 }
}}
]);
cursor.on('data', async (data) => {
cursor.pause();
data.date = data._id;
delete data._id;
await Target.upsert(
{ date: data.date },
{ "$set": data }
);
cursor.resume();
});
cursor.on('end', () => resolve('done'));
cursor.on('error', (err) => reject(err));
}))
);
console.log('Mapped');
let targets = await Target.find().fetch();
console.log(targets);
});
Which is essentially going to output to the target collection as was mentioned in comments like:
{
"_id" : "XdPGMkY24AcvTnKq7",
"date" : {
"year" : 2017,
"month" : 7,
"day" : 200
},
"countIn" : 1,
"countOut" : 1
}
Riiiight. I came up with the following query. Admittedly, I have seen simpler and nicer ones in my life but it certainly gets the job done:
db.getCollection('test').aggregate
(
{
$facet: // split aggregation into two pipelines
{
"in": [
{ "$match": { "inDate": { "$ne": null } } }, // get rid of null values
{ $group: { "_id": { "y": { "$year": "$inDate" }, "m": { "$month": "$inDate" }, "d": { "$dayOfMonth": "$inDate" } }, "cIn": { $sum : 1 } } }, // compute sum per inDate
],
"out": [
{ "$match": { "outDate": { "$ne": null } } }, // get rid of null values
{ $group: { "_id": { "y": { "$year": "$outDate" }, "m": { "$month": "$outDate" }, "d": { "$dayOfMonth": "$outDate" } }, "cOut": { $sum : 1 } } }, // compute sum per outDate
]
}
},
{ $project: { "result": { $setUnion: [ "$in", "$out" ] } } }, // merge results into new array
{ $unwind: "$result" }, // unwind array into individual documents
{ $replaceRoot: { newRoot: "$result" } }, // get rid of the additional field level
{ $group: { _id: { year: "$_id.y", "month": "$_id.m", "day": "$_id.d" }, "countIn": { $sum: "$cIn" }, "countOut": { $sum: "$cOut" } } } // group into final result
)
As always with MongoDB aggregations you can get an idea of what's going on by simply reducing the projection stages step by step starting from the end of the query.
EDIT:
As you can see in the comments below there was a bit of a discussion around document size limits and the general applicability of this solution.
So let's look at those aspects in greater detail and let's also compare the performance of the $facet based solution to the one based on $map (suggested by #NeilLunn to avoid potential document size issues).
I created 2 million test records that have random dates assigned to both the "inDate" and the "outDate" field:
{
"_id" : ObjectId("597857e0fa37b3f66959571a"),
"inDate" : ISODate("2016-07-29T22:00:00.000Z"),
"outDate" : ISODate("1988-07-14T22:00:00.000Z")
}
The data range covered was from 01.01.1970 all the way to 01.01.2050, that's a total of 29220 distinct days. Given the random distribution of the 2 million test records across this time range both queries can be expected to return the full 29220 possible results (which both did).
Then I ran both queries five times after restarting my single MongoDB instance freshly and the results in milliseconds I got looked like this:
$facet: 5663, 5400, 5380, 5460, 5520
$map: 9648, 9134, 9058, 9085, 9132
I also measured the size of the single document returned by the facet stage which was 3.19MB so reasonably far away from the MongoDB document size limit (16MB at the time of writing) which, however, only applies to the result document anyway and wouldn't be a problem during pipeline processing.
Bottom line: If you want performance, use the solution suggested here. Be careful about the document size limit, though, in particular if your use case is not the exact one described in the question above (e.g. when you need to collect even more/bigger data). Also, I am not sure if in a sharded scenario both solutions still expose the same performance characteristics...
If I have data in the following format:
[
{
_id: 1,
startDate: ISODate("2017-01-1T00:00:00.000Z"),
endDate: ISODate("2017-02-25T00:00:00.000Z"),
type: 'CAR'
},
{
_id: 2,
startDate: ISODate("2017-02-17T00:00:00.000Z"),
endDate: ISODate("2017-03-22T00:00:00.000Z"),
type: 'HGV'
}
]
Is it possible to retrieve data grouped by 'type', but also with a count of the type for each of month in a given date range e.g. between 2017/1/1 to 2017/4/1 would return:
[
{
_id: 'CAR',
monthCounts: [
/*January*/
{
from: ISODate("2017-01-1T00:00:00.000Z"),
to: ISODate("2017-01-31T23:59:59.999Z"),
count: 1
},
/*February*/
{
from: ISODate("2017-02-1T00:00:00.000Z"),
to: ISODate("2017-02-28T23:59:59.999Z"),
count: 1
},
/*March*/
{
from: ISODate("2017-03-1T00:00:00.000Z"),
to: ISODate("2017-03-31T23:59:59.999Z"),
count: 0
},
]
},
{
_id: 'HGV',
monthCounts: [
{
from: ISODate("2017-01-1T00:00:00.000Z"),
to: ISODate("2017-01-31T23:59:59.999Z"),
count: 0
},
{
from: ISODate("2017-02-1T00:00:00.000Z"),
to: ISODate("2017-02-28T23:59:59.999Z"),
count: 1
},
{
from: ISODate("2017-03-1T00:00:00.000Z"),
to: ISODate("2017-03-31T23:59:59.999Z"),
count: 1
},
]
}
]
The returned format is not really important, but what I am trying to achieve is in a single query to retrieve a number of counts for the same grouping (one per month). The input could be simply a start and end date to report from or more likely it could be an array of the date ranges to group by.
The algorithm for this is to basically "iterate" values between the interval of the two values. MongoDB has a couple of ways to deal with this, being what has always been present with mapReduce() and with new features available to the aggregate() method.
I'm going expand on your selection to deliberately show an overlapping month since your examples did not have one. This will result in the "HGV" values appearing in "three" months of output.
{
"_id" : 1,
"startDate" : ISODate("2017-01-01T00:00:00Z"),
"endDate" : ISODate("2017-02-25T00:00:00Z"),
"type" : "CAR"
}
{
"_id" : 2,
"startDate" : ISODate("2017-02-17T00:00:00Z"),
"endDate" : ISODate("2017-03-22T00:00:00Z"),
"type" : "HGV"
}
{
"_id" : 3,
"startDate" : ISODate("2017-02-17T00:00:00Z"),
"endDate" : ISODate("2017-04-22T00:00:00Z"),
"type" : "HGV"
}
Aggregate - Requires MongoDB 3.4
db.cars.aggregate([
{ "$addFields": {
"range": {
"$reduce": {
"input": { "$map": {
"input": { "$range": [
{ "$trunc": {
"$divide": [
{ "$subtract": [ "$startDate", new Date(0) ] },
1000
]
}},
{ "$trunc": {
"$divide": [
{ "$subtract": [ "$endDate", new Date(0) ] },
1000
]
}},
60 * 60 * 24
]},
"as": "el",
"in": {
"$let": {
"vars": {
"date": {
"$add": [
{ "$multiply": [ "$$el", 1000 ] },
new Date(0)
]
},
"month": {
}
},
"in": {
"$add": [
{ "$multiply": [ { "$year": "$$date" }, 100 ] },
{ "$month": "$$date" }
]
}
}
}
}},
"initialValue": [],
"in": {
"$cond": {
"if": { "$in": [ "$$this", "$$value" ] },
"then": "$$value",
"else": { "$concatArrays": [ "$$value", ["$$this"] ] }
}
}
}
}
}},
{ "$unwind": "$range" },
{ "$group": {
"_id": {
"type": "$type",
"month": "$range"
},
"count": { "$sum": 1 }
}},
{ "$sort": { "_id": 1 } },
{ "$group": {
"_id": "$_id.type",
"monthCounts": {
"$push": { "month": "$_id.month", "count": "$count" }
}
}}
])
The key to making this work is the $range operator which takes values for a "start" and and "end" as well as an "interval" to apply. The result is an array of values taken from the "start" and incremented until the "end" is reached.
We use this with startDate and endDate to generate the possible dates in between those values. You will note that we need to do some math here since the $range only takes a 32-bit integer, but we can take the milliseconds away from the timestamp values so that is okay.
Because we want "months", the operations applied extract the month and year values from the generated range. We actually generate the range as the "days" in between since "months" are difficult to deal with in math. The subsequent $reduce operation takes only the "distinct months" from the date range.
The result therefore of the first aggregation pipeline stage is a new field in the document which is an "array" of all the distinct months covered between startDate and endDate. This gives an "iterator" for the rest of the operation.
By "iterator" I mean than when we apply $unwind we get a copy of the original document for every distinct month covered in the interval. This then allows the following two $group stages to first apply a grouping to the common key of "month" and "type" in order to "total" the counts via $sum, and next $group makes the key just the "type" and puts the results in an array via $push.
This gives the result on the above data:
{
"_id" : "HGV",
"monthCounts" : [
{
"month" : 201702,
"count" : 2
},
{
"month" : 201703,
"count" : 2
},
{
"month" : 201704,
"count" : 1
}
]
}
{
"_id" : "CAR",
"monthCounts" : [
{
"month" : 201701,
"count" : 1
},
{
"month" : 201702,
"count" : 1
}
]
}
Note that the coverage of "months" is only present where there is actual data. Whilst possible to produce zero values over a range, it requires quite a bit of wrangling to do so and is not very practical. If you want zero values then it is better to add that in post processing in the client once the results have been retrieved.
If you really have your heart set on the zero values, then you should separately query for $min and $max values, and pass these in to "brute force" the pipeline into generating the copies for each supplied possible range value.
So this time the "range" is made externally to all documents, and you then use a $cond statement into the accumulator to see if the current data is within the grouped range produced. Also since the generation is "external", we really don't need the MongoDB 3.4 operator of $range, so this can be applied to earlier versions as well:
// Get min and max separately
var ranges = db.cars.aggregate(
{ "$group": {
"_id": null,
"startRange": { "$min": "$startDate" },
"endRange": { "$max": "$endDate" }
}}
).toArray()[0]
// Make the range array externally from all possible values
var range = [];
for ( var d = new Date(ranges.startRange.valueOf()); d <= ranges.endRange; d.setUTCMonth(d.getUTCMonth()+1)) {
var v = ( d.getUTCFullYear() * 100 ) + d.getUTCMonth()+1;
range.push(v);
}
// Run conditional aggregation
db.cars.aggregate([
{ "$addFields": { "range": range } },
{ "$unwind": "$range" },
{ "$group": {
"_id": {
"type": "$type",
"month": "$range"
},
"count": {
"$sum": {
"$cond": {
"if": {
"$and": [
{ "$gte": [
"$range",
{ "$add": [
{ "$multiply": [ { "$year": "$startDate" }, 100 ] },
{ "$month": "$startDate" }
]}
]},
{ "$lte": [
"$range",
{ "$add": [
{ "$multiply": [ { "$year": "$endDate" }, 100 ] },
{ "$month": "$endDate" }
]}
]}
]
},
"then": 1,
"else": 0
}
}
}
}},
{ "$sort": { "_id": 1 } },
{ "$group": {
"_id": "$_id.type",
"monthCounts": {
"$push": { "month": "$_id.month", "count": "$count" }
}
}}
])
Which produces the consistent zero fills for all possible months on all groupings:
{
"_id" : "HGV",
"monthCounts" : [
{
"month" : 201701,
"count" : 0
},
{
"month" : 201702,
"count" : 2
},
{
"month" : 201703,
"count" : 2
},
{
"month" : 201704,
"count" : 1
}
]
}
{
"_id" : "CAR",
"monthCounts" : [
{
"month" : 201701,
"count" : 1
},
{
"month" : 201702,
"count" : 1
},
{
"month" : 201703,
"count" : 0
},
{
"month" : 201704,
"count" : 0
}
]
}
MapReduce
All versions of MongoDB support mapReduce, and the simple case of the "iterator" as mentioned above is handled by a for loop in the mapper. We can get output as generated up to the first $group from above by simply doing:
db.cars.mapReduce(
function () {
for ( var d = this.startDate; d <= this.endDate;
d.setUTCMonth(d.getUTCMonth()+1) )
{
var m = new Date(0);
m.setUTCFullYear(d.getUTCFullYear());
m.setUTCMonth(d.getUTCMonth());
emit({ id: this.type, date: m},1);
}
},
function(key,values) {
return Array.sum(values);
},
{ "out": { "inline": 1 } }
)
Which produces:
{
"_id" : {
"id" : "CAR",
"date" : ISODate("2017-01-01T00:00:00Z")
},
"value" : 1
},
{
"_id" : {
"id" : "CAR",
"date" : ISODate("2017-02-01T00:00:00Z")
},
"value" : 1
},
{
"_id" : {
"id" : "HGV",
"date" : ISODate("2017-02-01T00:00:00Z")
},
"value" : 2
},
{
"_id" : {
"id" : "HGV",
"date" : ISODate("2017-03-01T00:00:00Z")
},
"value" : 2
},
{
"_id" : {
"id" : "HGV",
"date" : ISODate("2017-04-01T00:00:00Z")
},
"value" : 1
}
So it does not have the second grouping to compound to arrays, but we did produce the same basic aggregated output.
I have a Json file imported into MongoDB. Every line on it is a user, and I have a field product, with the name of it. I know the value of every product, they are just few.
But this information is not stored on the Json.
I was able to do aggregation to retrieve the number of time that a user bought a product, but I would like to do a query to get directly the amount of money that each user spent.
This is my query:
db.source.aggregate([
{"$match": {
"$and":[
{"productName":{
"$in":[
"product2","product2","product3",
"product4","product5","product6"
]
}},
{ "$or": [
{"appID" : "nameOfAPP"},
{"appID": "NameOfAPP2"}
]}
]
}},
{ "$group": {
"_id": {
"id_user": "$id_user",
"productName": "$productName"
},
"count": { "$sum": 1}
}},
{ "$sort" : { "count": -1 } }
])
so the output is like that:
{ "_id" : { "id_user" : "user1", "productID" : "product2" }, "count" : 433 }
{ "_id" : { "id_user" : "user2", "productID" : "product1" }, "count" : 370 }
{ "_id" : { "id_user" : "user1", "productID" : "product3" }, "count" : 300 }
{ "_id" : { "id_user" : "user3", "productID" : "product6" }, "count" : 250 }
{ "_id" : { "id_user" : "user2", "productID" : "product5" }, "count" : 140 }
{ "_id" : { "id_user" : "user3", "productID" : "product4" }, "count" : 90 }
I know that product 1 costs 20$, product 2 costs 40$, product 3 costs 55$, product 4 costs -90$, product 5 costs 110$, product 6 costs 200$.
I would like to have an output like that:
{ "_id" : { "id_user" : "user1"}, "money_spent" : 600$ }
{ "_id" : { "id_user" : "user2"}, "money_spent" : 400$ }
etc
Can you help to get that result, I am new with MongoDB.
Thanks in advance.
If you cannot go to the original source data an are only working with an import then do this:
db.source.aggregate([
{"$match": {
"$and":[
{ "productName": {
"$in":[
"product1","product2","product3",
"product4","product5","product6"
]
}},
{ "$or": [
{"appID" : "nameOfAPP"},
{"appID": "NameOfAPP2"}
]}
]
}},
{ "$group": {
"_id": "$id_user",
"cost": {
"$sum": {
"$cond": [
{ "$eq": ["$_id.productId", "product1"] },
20,
{ "$cond": [
{ "$eq": ["$productName", "product2"] },
40,
{ "$cond": [
{ "$eq": [ "$productName", "product3"] },
55,
{ "$cond": [
{ "$eq": [ "$productName", "product4" ] },
-90,
{ "$cond": [
{ "$eq": [ "$productName", "product5" ] },
110,
200
]}
]}
]}
]}
}
}
}
}}
])
The $cond operator evaluates whether your field value matches the condition and places the appropriate value simply just $sum to get your result.
$cond provides a "ternary" operator or "if .. then .. else" that is used to evaluate the condition you provide in the first argument. You construct this to "cascade" where the condition evaluates to false in order to move on to the next condition to evaluate, otherwise return the value that matches your condition.
In this way your "known" values are applied as you aggregate for your expected total.
I have a mongodb collection called Events, containing baseball games. Here is an example of one record in the table:
{
"name" : "Game# 814",
"dateStart" : ISODate("2012-09-28T14:47:53.695Z"),
"_id" : ObjectId("53a1b24de3f25f4443d9747e"),
"stats" : [
{
"team" : ObjectId("53a11a43a8de6dd8375c940b"),
"teamName" : "Reds",
"_id" : ObjectId("53a1b24de3f25f4443d97480"),
"score" : 17
},
{
"team" : ObjectId("53a11a43a8de6dd8375c938d"),
"teamName" : "Yankees",
"_id" : ObjectId("53a1b24de3f25f4443d9747f"),
"score" : 12
}
]
"__v" : 0
}
I need help writing the query that returns standings for all teams. The result set should look like:
{
"team" : ObjectId("53a11a43a8de6dd8375c938d"),
"teamName" : "Yankees",
"wins" : <<number of Yankees wins>>
"losses" : <<number of Yankees losses>>
"draws" : <<number of Yankees draws>>
}
{
"team" : ObjectId("53a11a43a8de6dd8375c940b"),
"teamName" : "Reds",
"wins" : <<number of Reds wins>>
"losses" : <<number of Reds losses>>
"draws" : <<number of Reds draws>>
}
...
Here's the query I've started with...
db.events.aggregate(
{"$unwind": "$stats" },
{ $group : {
_id : "$stats.team",
gamesPlayed : { $sum : 1},
totalScore : { $sum : "$stats.score" }
}}
);
... which returns results:
{
"result" : [
{
"_id" : ObjectId("53a11a43a8de6dd8375c93cb"),
"gamesPlayed" : 125, // not a requirement... just trying to get $sum working
"totalScore" : 1213 // ...same here
},
{
"_id" : ObjectId("53a11a44a8de6dd8375c955f"),
"gamesPlayed" : 128,
"totalScore" : 1276
},
{
"_id" : ObjectId("53a11a44a8de6dd8375c9661"),
"gamesPlayed" : 152,
"totalScore" : 1509
},
....
It would seem advisable for you to keep your "wins", "losses", "draws" within your documents as you create or update them. But it is possible to do with aggregate if a little long winded
db.events.aggregate([
// Unwind the "stats" array
{ "$unwind": "$stats" },
// Combine the document with new fields
{ "$group": {
"_id": "$_id",
"firstTeam": { "$first": "$stats.team" },
"firstTeamName": { "$first": "$stats.teamName" },
"firstScore": { "$first": "$stats.score" },
"lastTeam": { "$last": "$stats.team" },
"lastTeamName": { "$last": "$stats.teamName" },
"lastScore": { "$last": "$stats.score" },
"minScore": { "$min": "$stats.score" },
"maxScore": { "$max": "$stats.score" }
}},
// Calculate by comparing scores
{ "$project": {
"firstTeam": 1,
"firstTeamName": 1,
"firstScore": 1,
"lastTeam": 1,
"lastTeamName": 1,
"lastScore": 1,
"firstWins": {
"$cond": [
{ "$gt": [ "$firstScore", "$lastScore" ] },
1,
0
]
},
"firstLosses": {
"$cond": [
{ "$lt": [ "$firstScore", "$lastScore" ] },
1,
0
]
},
"firstDraws": {
"$cond": [
{ "$eq": [ "$firstScore", "$lastScore" ] },
1,
0
]
},
"lastWins": {
"$cond": [
{ "$gt": [ "$lastScore", "$firstScore" ] },
1,
0
]
},
"lastLosses": {
"$cond": [
{ "$lt": [ "$lastScore", "$firstScore" ] },
1,
0
]
},
"lastDraws": {
"$cond": [
{ "$eq": [ "$lastScore", "$firstScore" ] },
1,
0
]
},
"type": { "$literal": [ true, false ] }
}},
// Unwind the "type"
{ "$unwind": "$type" },
// Group teams conditionally on "type"
{ "$group": {
"_id": {
"team": {
"$cond": [
"$type",
"$firstTeam",
"$lastTeam"
]
},
"teamName": {
"$cond": [
"$type",
"$firstTeamName",
"$lastTeamName"
]
}
},
"owins": {
"$sum": {
"$cond": [
"$type",
"$firstWins",
"$lastWins"
]
}
},
"olosses": {
"$sum": {
"$cond": [
"$type",
"$firstLosses",
"$lastLosses"
]
}
},
"odraws": {
"$sum": {
"$cond": [
"$type",
"$firstDraws",
"$lastDraws"
]
}
}
}},
// Project your final form
{ "$project": {
"_id": 0,
"team": "$_id.team",
"teamName": "$_id.teamName",
"wins": "$owins",
"losses": "$olosses",
"draws": "$odraws"
}}
])
The first part is to "re-shape" the document by unwinding the array and then grouping with "first" and "last" for defining fields for your two teams.
Then you want to $project through those documents and calculate your "wins", "losses" and "draws" for each team in the pairing. The additional thing is adding an array field for the two values true/false is convenient here. If you are on a pre 2.6 version of mongodb the $literal can be replaced with $const which is not documented but does the same thing.
Once you $unwind that "type" array, the documents can be split apart in the $group stage by evaluating whether to choose the "first" or "last" team field values via the use of $cond. This is a ternary operator that evaluates a true/false condition and returns the appropriate value according to that condition.
With a final $project your documents are formed exactly how you want.