I'm new to Spark and am trying to insert a column to each input row with the file name that it comes from.
I've seen others ask a similar question, but all their answers used wholeTextFile, but I'm trying to do this for larger CSV files (read using the Spark-CSV library), JSON files, and Parquet files (not just small text files).
I can use the spark-shell to get a list of the filenames:
val df = sqlContext.read.parquet("/blah/dir")
val names = df.select(inputFileName())
names.show
but that's a dataframe.
I am not sure how to add it as a column to each row (and if that result is ordered the same as the initial data either, though I assume it always is) and how to do this as a general solution for all input types.
Another solution I just found to add file name as one of the columns in DataFrame
val df = sqlContext.read.parquet("/blah/dir")
val dfWithCol = df.withColumn("filename",input_file_name())
Ref:
spark load data and add filename as dataframe column
When you create a RDD from a text file, you probably want to map the data into a case class, so you could add the input source in that stage:
case class Person(inputPath: String, name: String, age: Int)
val inputPath = "hdfs://localhost:9000/tmp/demo-input-data/persons.txt"
val rdd = sc.textFile(inputPath).map {
l =>
val tokens = l.split(",")
Person(inputPath, tokens(0), tokens(1).trim().toInt)
}
rdd.collect().foreach(println)
If you do not want to mix "business data" with meta data:
case class InputSourceMetaData(path: String, size: Long)
case class PersonWithMd(name: String, age: Int, metaData: InputSourceMetaData)
// Fake the size, for demo purposes only
val md = InputSourceMetaData(inputPath, size = -1L)
val rdd = sc.textFile(inputPath).map {
l =>
val tokens = l.split(",")
PersonWithMd(tokens(0), tokens(1).trim().toInt, md)
}
rdd.collect().foreach(println)
and if you promote the RDD to a DataFrame:
import sqlContext.implicits._
val df = rdd.toDF()
df.registerTempTable("x")
you can query it like
sqlContext.sql("select name, metadata from x").show()
sqlContext.sql("select name, metadata.path from x").show()
sqlContext.sql("select name, metadata.path, metadata.size from x").show()
Update
You can read the files in HDFS using org.apache.hadoop.fs.FileSystem.listFiles() recursively.
Given a list of file names in a value files (standard Scala collection containing org.apache.hadoop.fs.LocatedFileStatus), you can create one RDD for each file:
val rdds = files.map { f =>
val md = InputSourceMetaData(f.getPath.toString, f.getLen)
sc.textFile(md.path).map {
l =>
val tokens = l.split(",")
PersonWithMd(tokens(0), tokens(1).trim().toInt, md)
}
}
Now you can reduce the list of RDDs into a single one: The function for reduce concats all RDDs into a single one:
val rdd = rdds.reduce(_ ++ _)
rdd.collect().foreach(println)
This works, but I cannot test if this distributes/performs well with large files.
Related
I have a dataframe which has two columns in it, has been created importing a .txt file.
sample file content::
Sankar Biswas, Played{"94"}
Puja "Kumari" Jha, Didnot
Man Women, null
null,Gay Gentleman
null,null
Created a dataframe importing the above file ::
val a = sc.textFile("file:////Users/sankar.biswas/Desktop/hello.txt")
case class Table(contentName: String, VersionDetails: String)
val b = a.map(_.split(",")).map(p => Table(p(0).trim,p(1).trim)).toDF
Now I have a function defined lets say like this ::
def getFormattedName(contentName : String, VersionDetails:String): Option[String] = {
Option(contentName+titleVersionDesc)
}
Now what I need to do is I have to take each row of the dataframe and call the method getFormattedName passing the 2 arguments of the dataframe's each row.
I tried like this and many others but did not work out ::
val a = b.map((m,n) => getFormattedContentName(m,n))
Looking forward to any suggestion you have for me.
Thanks in advance.
I think you have a structured schema and it can be represented by a dataframe.
Dataframe has support for reading the csv input.
import org.apache.spark.sql.types._
val customSchema = StructType(Array(StructField("contentName", StringType, true),StructField("titleVersionDesc", StringType, true)))
val df = spark.read.schema(customSchema).csv("input.csv")
To call a custom method on dataset, you can create a UDF(User Defined Function).
def getFormattedName(contentName : String, titleVersionDesc:String): Option[String] = {
Option(contentName+titleVersionDesc)
}
val get_formatted_name = udf(getFormattedName _)
df.select(get_formatted_name($"contentName", $"titleVersionDesc"))
Try
val a = b.map(row => getFormattedContentName(row(0),row(1)))
Remember that the rows of a dataframe are their own type, not a tuple or something, and you need to use the correct methodology for referring to their elements.
I have a spark DataFrame, df1, which contains several columns, one of them is with IDs of patients. I want to take this column and perform a function that sends http request for information regarding every ID, say medical test. This information is then parsed from json and returned by the function as DataFrame of multiple tests. I want to do this for all the IDs so that I have a second DataFrame, df2, with all medical tests information for the IDs in df1.
I tried the following code, which I think is not optimal especially for large number of patients. My problem is that I cannot handle the results in the form of Array[org.apache.spark.sql.DataFrame]. Note this is a sample code, in real life I might have 100 tests for one ID and only 3 for another.
import scala.util.Random._
val df1 = Seq(
("9031x", 32),
("1102z", 12),
("3048o", 54)
).toDF("ID", "age")
// a function that takes the string and returns a DataFrame
def getPatientInfo(ID: String): org.apache.spark.sql.DataFrame = {
val r = scala.util.Random
val df2 = Seq(
("test1", r.nextInt(100), r.nextInt(40)+1980, r.nextString(4)),
("test2", r.nextInt(100), r.nextInt(40)+1980, r.nextString(3)),
("test3", r.nextInt(100), r.nextInt(40)+1980, r.nextString(5))
).toDF("testName", "year", "result", "Notes")
df2
}
// convert the ID to Array[String]
val ID = df1.collect().map(row => row.getString(0))
// apply the function foreach ID
val medicalRecords = for (i <- ID) yield {getPatientInfo(i)}
Are there any other optimal approaches?
TL;DR;
It is not possible DataFrame.map (or equivalent method) cannot use SparkSession or distributed data structures.
If you want make it work, use your favorite JSON parser instead and redefine getPatient as either:
def getPatientInfo(ID: String): Seq[Row]
or
def getPatientInfo(ID: String): T
where T is a case class and replace:
df1.flatMap(row => getPatientInfo(row.getString(0)))
(adding Encoder if necessary).
I have a rdd containing values, each of those values will be passed to a function generate_df(num:Int) to create a dataframe. So essentially in the end we will have a list of dataframes stored in a list buffer like this var df_list_example = new ListBuffer[org.apache.spark.sql.DataFrame]().
First I will show the code and result of doing it using a list instead of RDD:
var df_list = new ListBuffer[org.apache.spark.sql.DataFrame]()
for (i <- list_values) //list_values contains values
{
df_list += generate_df(i)
}
Result:
df_list:
scala.collection.mutable.ListBuffer[org.apache.spark.sql.DataFrame] =
ListBuffer([value: int], [value: int], [value: int])
However, when I am using RDD which is very essential for my use case I am having issue:
var df_rdd_list = new ListBuffer[org.apache.spark.sql.DataFrame]()
//rdd_values contains values
rdd_values.map( i => df_rdd_list += generate_df(i) )
Result:
df_rdd_list:
scala.collection.mutable.ListBuffer[org.apache.spark.sql.DataFrame] =
ListBuffer()
Basically the list buffer remains empty and cannot store dataframes unlike when I am using list of values instead of rdd of values. Mapping using rdd is essential for my original use case.
I have an RDD that has the signature
org.apache.spark.rdd.RDD[java.io.ByteArrayOutputStream]
In this RDD, each row has its own partition.
This ByteArrayOutputStream is zip output. I am applying some processing on the data in each partition and i want to export the processed data from each partition as a single zip file. What is the best way to export each Row in the final RDD as one file per row on hdfs?
If you are interested in knowing how I ended up with such an Rdd.
val npyData = transformedTopData.select("tokenIDF", "topLevelId").rdd.repartition(2).mapPartitions(x => {
val vectors = for {
row <- x
} yield {
row.getAs[Vector](0)
}
Seq(ml2npyCSR(vectors.toSeq).zipOut)
}.iterator)
EDIT: Count works perfectly fine
scala> npyData.count()
res9: Long = 2
Spark has very little support for file system operations. You'll need to Hadoop FileSystem API to create individual files
// This method is needed as Hadoop conf object is not serializable
def createFileStream(pathStr:String) = {
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
val hadoopconf = new Configuration();
val fs = FileSystem.get(hadoopconf);
val outFileStream = fs.create(new Path(pathStr));
outFileStream
}
// Method writes to individual files.
// Needs a unique id along with object for output file naming
def writeToFile( x:(Char, Long) ) : Unit = {
val (dataStream, id) = x
val output_dir = "/tmp/del_a/"
val outFileStream = createFileStream(output_dir+id)
dataStream.writeTo(outFileStream)
outFileStream.close()
}
// zipWithIndex used for creating unique id for each item in rdd
npyData.zipWithIndex().foreach(writeToFile)
Reference:
Hadoop FileSystem example
ByteArrayOutputStream.writeTo(java.io.OutputStream)
I figured out that I should represent my data as PairRDD and implement a custom FileOutputFormat. I looked in to the implementation of SequenceFileOutputFormat for inspiration and managed to write my own version based on that.
My custom FileOutputFormat is available here
I am trying to read multiple csvs into an rdd from a path. This path has many csvs Is there a way I can avoid the headers while reading all the csvs into rdd? or use spotsRDD to omit out the header without having to use filter or deal with each csv individually and then union them?
val path ="file:///home/work/csvs/*"
val spotsRDD= sc.textFile(path)
println(spotsRDD.count())
Thanks
That is pity you are using spark 1.0.0.
You can use CSV Data Source for Apache Spark but this library requires Spark 1.3+ and btw. this library was inlined to Spark 2.x.
But we can analyse and implement something similar.
When we look into the com/databricks/spark/csv/DefaultSource.scala there is
val useHeader = parameters.getOrElse("header", "false")
and then in the com/databricks/spark/csv/CsvRelation.scala there is
// If header is set, make sure firstLine is materialized before sending to executors.
val filterLine = if (useHeader) firstLine else null
baseRDD().mapPartitions { iter =>
// When using header, any input line that equals firstLine is assumed to be header
val csvIter = if (useHeader) {
iter.filter(_ != filterLine)
} else {
iter
}
parseCSV(csvIter, csvFormat)
so if we assume the first line is only once in RDD (our csv rows) we can do something like in the example below:
CSV example file:
Latitude,Longitude,Name
48.1,0.25,"First point"
49.2,1.1,"Second point"
47.5,0.75,"Third point"
scala> val csvData = sc.textFile("test.csv")
csvData: org.apache.spark.rdd.RDD[String] = test.csv MapPartitionsRDD[24] at textFile at <console>:24
scala> val header = csvDataRdd.first
header: String = Latitude,Longitude,Name
scala> val csvDataWithoutHeaderRdd = csvDataRdd.mapPartitions{iter => iter.filter(_ != header)}
csvDataWithoutHeaderRdd: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[25] at mapPartitions at <console>:28
scala> csvDataWithoutHeaderRdd.foreach(println)
49.2,1.1,"Second point"
48.1,0.25,"First point"
47.5,0.75,"Third point"