TL;DR; I am trying to train off of an existing data set (Seq[Words] with corresponding categories), and use that trained dataset to filter another dataset using category similarity.
I am trying to train a corpus of data and then use it for text analysis*. I've tried using NaiveBayes, but that seems to only work with the data you have, so it's predict algorithm will always return something, even if it doesn't match anything.
So, I am now trying to use TFIDF and passing that output into a RowMatrix and computing the similarities. But, I'm not sure how to run my query (one word for now). Here's what I've tried:
val rddOfTfidfFromCorpus : RDD[Vector]
val query = "word"
val tf = new HashingTF().transform(List(query))
val tfIDF = new IDF().fit(sc.makeRDD(List(tf))).transform(tf)
val mergedVectors = rddOfTfidfFromCorpus.union(sc.makeRDD(List(tfIDF)))
val similarities = new RowMatrix(mergedVectors).columnSimilarities(1.0)
Here is where I'm stuck (if I've even done everything right until here). I tried filtering the similarities i and j down to the parts of my query's TFIDF and end up with an empty collection.
The gist is that I want to train on a corpus of data and find what category it falls in. The above code is at least trying to get it down to one category and checking if I can get a prediction from that at least....
*Note that this is a toy example, so I only need something that works well enough
*I am using Spark 1.4.0
Using columnSimilarities doesn't make sense here. Since each column in your matrix represents a set of terms you'll get a matrix of similarities between tokens not documents. You could transpose the matrix and then use columnSimilarities but as far as I understand what you want is a similarity between query and corpus. You can express that using matrix multiplication as follows:
For starters you'll need an IDFModel you've trained on a corpus. Lets assume it is called idf:
import org.apache.spark.mllib.feature.IDFModel
val idf: IDFModel = ??? // Trained using corpus data
and a small helper:
def toBlockMatrix(rdd: RDD[Vector]) = new IndexedRowMatrix(
rdd.zipWithIndex.map{case (v, i) => IndexedRow(i, v)}
).toCoordinateMatrix.toBlockMatrix
First lets convert query to an RDD and compute TF:
val query: Seq[String] = ???
val queryTf = new HashingTF().transform(query)
Next we can apply IDF model and convert result to matrix:
val queryTfidf = idf.transform(queryTf)
val queryMatrix = toBlockMatrix(queryTfidf)
We'll need a corpus matrix as well:
val corpusMatrix = toBlockMatrix(rddOfTfidfFromCorpus)
If you multiple both we get a matrix with number of rows equal to the number of docs in the query and number of columns equal to the number of documents in the corpus.
val dotProducts = queryMatrix.multiply(corpusMatrix.transpose)
To get a proper cosine similarity you have to divide by a product of magnitudes but if you can handle that.
There are two problems here. First of all it is rather expensive. Moreover I am not sure if it really useful. To reduce cost you can apply some dimensionality reduction algorithm first but lets leave it for now.
Judging from a following statement
NaiveBayes (...) seems to only work with the data you have, so it's predict algorithm will always return something, even if it doesn't match anything.
I guess you want some kind of unsupervised learning method. The simplest thing you can try is K-means:
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
val numClusters: Int = ???
val numIterations = 20
val model = KMeans.train(rddOfTfidfFromCorpus, numClusters, numIterations)
val predictions = model.predict(queryTfidf)
Related
I've been breaking my head about this one for a couple of days now. It feels like it should be intuitively easy... Really hope someone can help!
I've built an org.nd4j.linalg.api.ndarray.INDArray of word occurrence from some semi-structured data like this:
import org.nd4j.linalg.factory.Nd4j
import org.nd4s.Implicits._
val docMap = collection.mutable.Map[Int,Map[Int,Int]] //of the form Map(phrase -> Map(phrasePosition -> word)
val words = ArrayBuffer("word_1","word_2","word_3",..."word_n")
val windows = ArrayBuffer("$phrase,$phrasePosition_1","$phrase,$phrasePosition_2",..."$phrase,$phrasePosition_n")
var matrix = Nd4j.create(windows.length*words.length).reshape(windows.length,words.length)
for (row <- matrix.shape(0)){
for(column <- matrix.shape(1){
//+1 to (row,column) if word occurs at phrase, phrasePosition indicated by window_n.
}
}
val finalmatrix = matrix.T.dot(matrix) // to get co-occurrence matrix
So far so good...
Downstream of this point I need to integrate the data into an existing pipeline in Spark, and use that implementation of pca etc, so I need to create a DataFrame, or at least an RDD. If I knew the number of words and/or windows in advance I could do something like:
case class Row(window : String, word_1 : Double, word_2 : Double, ...etc)
val dfSeq = ArrayBuffer[Row]()
for (row <- matrix.shape(0)){
dfSeq += Row(windows(row),matrix.get(NDArrayIndex.point(row), NDArrayIndex.all()))
}
sc.parallelize(dfSeq).toDF("window","word_1","word_2",...etc)
but the number of windows and words is determined at runtime. I'm looking for a WindowsxWords org.apache.spark.sql.DataFrame as output, input is a WindowsxWords org.nd4j.linalg.api.ndarray.INDArray
Thanks in advance for any help you can offer.
Ok, so after several days work it looks like the simple answer is: there isn't one. In fact, it looks like trying to use Nd4j in this context at all is a bad idea for several reasons:
It's (really) hard to get data out of the native INDArray format once you've put it in.
Even using something like guava, the .data() method brings everything on heap which will quickly become expensive.
You've got the added hassle of having to compile an assembly jar or use hdfs etc to handle the library itself.
I did also consider using Breeze which may actually provide a viable solution but carries some of the same problems and can't be used on distributed data structures.
Unfortunately, using native Spark / Scala datatypes, although easier once you know how, is - for someone like me coming from Python + numpy + pandas heaven at least - painfully convoluted and ugly.
Nevertheless, I did implement this solution successfully:
import org.apache.spark.mllib.linalg.{Vectors,Vector,Matrix,DenseMatrix,DenseVector}
import org.apache.spark.mllib.linalg.distributed.RowMatrix
//first make a pseudo-matrix from Scala Array[Double]:
var rowSeq = Seq.fill(windows.length)(Array.fill(words.length)(0d))
//iterate through 'rows' and 'columns' to fill it:
for (row 0 until windows.length){
for (column 0 until words.length){
// rowSeq(row)(column) += 1 if word occurs at phrase, phrasePosition indicated by window_n.
}
}
//create Spark DenseMatrix
val rows : Array[Double] = rowSeq.transpose.flatten.toArray
val matrix = new DenseMatrix(windows.length,words.length,rows)
One of the main operations that I needed Nd4J for was matrix.T.dot(matrix) but it turns out that you can't multiply 2 matrices of Type org.apache.spark.mllib.linalg.DenseMatrix together, one of them (A) has to be a org.apache.spark.mllib.linalg.distributed.RowMatrix and - you guessed it - you can't call matrix.transpose() on a RowMatrix, only on a DenseMatrix! Since it's not really relevant to the question, I'll leave that part out, except to explain that what comes out of that step is a RowMatrix. Credit is also due here and here for the final part of the solution:
val rowMatrix : [RowMatrix] = transposeAndDotDenseMatrix(matrix)
// get DataFrame from RowMatrix via DenseMatrix
val newdense = new DenseMatrix(rowMatrix.numRows().toInt,rowMatrix.numCols().toInt,rowMatrix.rows.collect.flatMap(x => x.toArray)) // the call to collect() here is undesirable...
val matrixRows = newdense.rowIter.toSeq.map(_.toArray)
val df = spark.sparkContext.parallelize(matrixRows).toDF("Rows")
// then separate columns:
val df2 = (0 until words.length).foldLeft(df)((df, num) =>
df.withColumn(words(num), $"Rows".getItem(num)))
.drop("Rows")
Would love to hear improvements and suggestions on this, thanks.
I have a dataset containing sentences and boolean columns (0 or 1) to classify the type of the comment (toxic|severe_toxic|obscene|threat|insult|identity_hate).
You can download the dataset here : https://ufile.io/nqns7
I filtered the words with spacy to only keep useful words, i kept : Adjectives, Adverbs, Verbs and Nouns using this function :
def filter_words(words) :
vec = []
conditions = ('ADV','NOUN','ADJ','VERB')
for token in nlp(words):
if not token.is_stop and token.pos_ in conditions:
vec.append(token.lemma_)
return vec
Then i converted the dataframe to a parquet file to speed up the performances.
I ended up with a dataframe which looks like this :
I used a Word2Vec on this DF to create a features column in order to use RandomForestClassifier to predict if model works well.
Here is the code :
from pyspark.ml.feature import Word2Vec
from pyspark.sql.functions import *
word2vec = Word2Vec(inputCol="vector_words",outputCol="features")
model = word2vec.fit(sentences)
result = model.transform(sentences)
result = result.withColumn("toxic", result["toxic"].cast(IntegerType()))
rf =RandomForestClassifier(labelCol="toxic",featuresCol="features")
result = result.dropna()
(trainingSet, testSet) = result.randomSplit([0.7,0.3])
model_toxic = rf.fit(trainingSet)
predictions = model_toxic.transform(testSet)
But the problem i have here, is that i only have 16 predictions that are considered toxic from which 13 are really identified as toxic while there are about 4000 toxic comments in the set.
I don't understand why. Is it because of the filter i applied on the words, which might be too restrictive( i don't know why though ) or is it because the parameters of my Word2Vec and RandomForestClassifier aren't precise enough?
I'm new to pyspark and i couldn't find any information about bad models, basically people on internet are pretty happy about the results. Any help would be appreciated.
I am new to word2vec. With applying this method, I am trying to form some clusters based on words extracted by word2vec from scientific publications' abstracts. To this end, I have first retrieved sentences from the abstracts via stanfordNLP and put each sentence into a line in a text file. Then the text file required by deeplearning4j word2vec was ready to process (http://deeplearning4j.org/word2vec).
Since the texts come from scientific fields, there are a lot of mathematical terms or brackets. See the sample sentences below:
The meta-analysis showed statistically significant effects of pharmacopuncture compared to conventional treatment = 3.55 , P = .31 , I-2 = 16 % ) .
90 asymptomatic hypertensive subjects associated with LVH , DM , or RI were randomized to receive D&G herbal capsules 1 gm/day , 2 gm/day , or identical placebo capsules in double-blind and parallel fashion for 12 months .
After preparing the text file, I have run word2vec as below:
SentenceIterator iter = new LineSentenceIterator(new File(".../filename.txt"));
iter.setPreProcessor(new SentencePreProcessor() {
#Override
public String preProcess(String sentence) {
//System.out.println(sentence.toLowerCase());
return sentence.toLowerCase();
}
});
// Split on white spaces in the line to get words
TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new CommonPreprocessor());
log.info("Building model....");
Word2Vec vec = new Word2Vec.Builder()
.minWordFrequency(5)
.iterations(1)
.layerSize(100)
.seed(42)
.windowSize(5)
.iterate(iter)
.tokenizerFactory(t)
.build();
log.info("Fitting Word2Vec model....");
vec.fit();
log.info("Writing word vectors to text file....");
// Write word vectors
WordVectorSerializer.writeWordVectors(vec, "abs_terms.txt");
This script creates a text file containing many words withe their related vector values in each row as below:
pills -4.559159278869629E-4 0.028691953048110008 0.023867368698120117 ...
tricuspidata -0.00431067543104291 -0.012515762820839882 0.0074045853689312935 ...
As a subsequent step, this text file has been used to form some clusters via k-means in spark. See the code below:
val rawData = sc.textFile("...abs_terms.txt")
val extractedFeatureVector = rawData.map(s => Vectors.dense(s.split(' ').slice(2,101).map(_.toDouble))).cache()
val numberOfClusters = 10
val numberOfInterations = 100
//We use KMeans object provided by MLLib to run
val modell = KMeans.train(extractedFeatureVector, numberOfClusters, numberOfInterations)
modell.clusterCenters.foreach(println)
//Get cluster index for each buyer Id
val AltCompByCluster = rawData.map {
row=>
(modell.predict(Vectors.dense(row.split(' ').slice(2,101)
.map(_.toDouble))),row.split(',').slice(0,1).head)
}
AltCompByCluster.foreach(println)
As a result of the latest scala code above, I have retrieved 10 clusters based on the word vectors suggested by word2vec. However, when I have checked my clusters no obvious common words appeared. That is, I could not get reasonable clusters as I expected. Based on this bottleneck of mine I have a few questions:
1) From some tutorials for word2vec I have seen that no data cleaning is made. In other words, prepositions etc. are left in the text. So how should I apply cleaning procedure when applying word2vec?
2) How can I visualize the clustering results in a explanatory way?
3) Can I use word2vec word vectors as input to neural networks? If so which neural network (convolutional, recursive, recurrent) method would be more suitable for my goal?
4) Is word2vec meaningful for my goal?
Thanks in advance.
I have a confusion regarding BinaryClassificationMetrics (Mllib) inputs. As per Apache Spark 1.6.0, we need to pass predictedandlabel of Type (RDD[(Double,Double)]) from transformed DataFrame that having predicted, probability(vector) & rawPrediction(vector).
I have created RDD[(Double,Double)] from Predicted and label columns. After performing BinaryClassificationMetrics evaluation on NavieBayesModel, I'm able to retrieve ROC, PR etc. But the values are limited, I can't able plot the curve using the value generated from this. Roc contains 4 values and PR contains 3 value.
Is it the right way of preparing PredictedandLabel or do I need to use rawPrediction column or Probability column instead of Predicted column?
Prepare like this:
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel}
val df = sqlContext.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
val predictions = new NaiveBayes().fit(df).transform(df)
val preds = predictions.select("probability", "label").rdd.map(row =>
(row.getAs[Vector](0)(0), row.getAs[Double](1)))
And evaluate:
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
new BinaryClassificationMetrics(preds, 10).roc
If predictions are only 0 or 1 number of buckets can be lower like in your case. Try more complex data like this:
val anotherPreds = df1.select(rand(), $"label").rdd.map(row => (row.getDouble(0), row.getDouble(1)))
new BinaryClassificationMetrics(anotherPreds, 10).roc
Despite existing a lot of seemingly similar questions none answers my question.
I have a DataFrame already processed in order to be fed to a DecisionTreeClassifier and it contains a column label which is filled with either 0.0 or 1.0.
I need to bootstrap my data set, by randomly selecting with replacement the same amount of rows for each values of my label column.
I've looked at all the doc and all I could find are DataFrame.sample(...) and DataFrameStatFunctions.sampleBy(...) but the issue with those are that the number of sample retained is not guaranteed and the second one doesn't allow replacement! This wouldn't be an issue on larger data set but in around 50% of my cases I'll have one of the label values that have less than a hundred rows and I really don't want skewed data.
Despite my best efforts, I was unable to find a clean solution to this problem and I resolved myself. to collecting the whole DataFrame and doing the sampling "manually" in Scala before recreating a new DataFrame to train my DecisionTreeClassifier on. But this seem highly inefficient and cumbersome, I would much rather stay with DataFrame and keep all the benefits coming from that structure.
Here is my current implementation for reference and so you know exactly what I'd like to do:
val nbSamplePerClass = /* some int value currently ranging between 50 and 10000 */
val onesDataFrame = inputDataFrame.filter("label > 0.0")
val zeros = inputDataFrame.except(onesDataFrame).collect()
val ones = onesDataFrame.collect()
val nbZeros = zeros.count().toInt
val nbOnes = ones.count().toInt
def randomIndexes(maxIndex: Int) = (0 until nbSamplePerClass).map(
_ => new scala.util.Random().nextInt(maxIndex)).toSeq
val zerosSample = randomIndexes(nbZeros).map(idx => zeros(idx))
val onesSample = randomIndexes(nbOnes).map(idx => ones(idx))
val samples = scala.collection.JavaConversions.seqAsJavaList(zerosSample ++ onesSample)
val resDf = sqlContext.createDataFrame(samples, inputDataFrame.schema)
Does anyone know how I could implement such a sampling while only working with DataFrames?
I'm pretty sure that it would significantly speed up my code!
Thank you for your time.