I need to calculate the shortest distance from a lat/lng GPS point P to a line segment described by 2 other lat/lng GPS points A and B.
'Cross-track distance' helps me to calculate the shortest distance between P and the great circle described by A and B.
However, this is not what I want. I need need the distance between P and the line segment of A-B, not the entire great circle.
I have used the following implementation from http://www.movable-type.co.uk/scripts/latlong.html
Formula: dxt = asin( sin(δ13) ⋅ sin(θ13−θ12) ) ⋅ R
where:
δ13 is (angular) distance from start point to third point
θ13 is (initial) bearing from start point to third point
θ12 is (initial) bearing from start point to end point
R is the earth’s radius
The following images hopefully demonstrate the problem I am trying to solve:
In the first image the Cross-Track distance, indicated by the green line is correct and indeed the shortest distance to the line segment AB.
In the second image the problem with cross-track distance is shown, In this case I would want the shortest distance to be the simple distance AP, but Cross-Track distance gives me the distance indicated by the red line.
How do I change my algoritm to take this into account, or check whether or not point X is within AB. Is it possible to do this computationally? Or is iterative the only possible (expensive) solution? (take N points along AB and calculate the min distance from P to all these points)
For simplicity purposes all lines in the images are straight. In reality, these are minor arcs on a great circle
First, some nomenclature:
Our arc is drawn from p1 to p2.
Our third point is p3.
The imaginary point that intersects the great circle is p4.
p1 is defined by lat1,lon1; p2 by lat2,lon2; etc.
dis12 is the distance from p1 to p2; etc.
bear12 is the bearing from p1 to p2; etc.
dxt is cross-track distance.
dxa is cross-arc distance, our goal!
Notice that the cross-track formula relies on the relative bearing, bear13-bear12
We have 3 cases to deal with.
Case 1: The relative bearing is obtuse. So, dxa=dis13.
Case 2.1: The relative bearing is acute, AND p4 falls on our arc.
So, dxa=dxt.
Case 2.2: The relative bearing is acute,AND p4 falls beyond our arc.
So, dxa=dis23
The algorithm:
Step 1: If relative bearing is obtuse, dxa=dis13
Done!
Step 2: If relative bearing is acute:
2.1: Find dxt.
2.3: Find dis12.
2.4: Find dis14.
2.4: If dis14>dis12, dxa=dis23.
Done!
2.5: If we reach here, dxa=abs(dxt)
MATLAB code:
function [ dxa ] = crossarc( lat1,lon1,lat2,lon2,lat3,lon3 )
%// CROSSARC Calculates the shortest distance in meters
%// between an arc (defined by p1 and p2) and a third point, p3.
%// Input lat1,lon1,lat2,lon2,lat3,lon3 in degrees.
lat1=deg2rad(lat1); lat2=deg2rad(lat2); lat3=deg2rad(lat3);
lon1=deg2rad(lon1); lon2=deg2rad(lon2); lon3=deg2rad(lon3);
R=6371000; %// Earth's radius in meters
%// Prerequisites for the formulas
bear12 = bear(lat1,lon1,lat2,lon2);
bear13 = bear(lat1,lon1,lat3,lon3);
dis13 = dis(lat1,lon1,lat3,lon3);
diff = abs(bear13-bear12);
if diff > pi
diff = 2 * pi - diff;
end
%// Is relative bearing obtuse?
if diff>(pi/2)
dxa=dis13;
else
%// Find the cross-track distance.
dxt = asin( sin(dis13/R)* sin(bear13 - bear12) ) * R;
%// Is p4 beyond the arc?
dis12 = dis(lat1,lon1,lat2,lon2);
dis14 = acos( cos(dis13/R) / cos(dxt/R) ) * R;
if dis14>dis12
dxa=dis(lat2,lon2,lat3,lon3);
else
dxa=abs(dxt);
end
end
end
function [ d ] = dis( latA, lonA, latB, lonB )
%DIS Finds the distance between two lat/lon points.
R=6371000;
d = acos( sin(latA)*sin(latB) + cos(latA)*cos(latB)*cos(lonB-lonA) ) * R;
end
function [ b ] = bear( latA,lonA,latB,lonB )
%BEAR Finds the bearing from one lat/lon point to another.
b=atan2( sin(lonB-lonA)*cos(latB) , ...
cos(latA)*sin(latB) - sin(latA)*cos(latB)*cos(lonB-lonA) );
end
Sample outputs: Demonstrate all cases. See maps below.
>> crossarc(-10.1,-55.5,-15.2,-45.1,-10.5,-62.5)
ans =
7.6709e+05
>> crossarc(40.5,60.5,50.5,80.5,51,69)
ans =
4.7961e+05
>> crossarc(21.72,35.61,23.65,40.7,25,42)
ans =
1.9971e+05
Those same outputs on the map!:
Demonstrates case 1:
Demonstrates case 2.1:
Demonstrates case 2.2:
Credit to: http://www.movable-type.co.uk/scripts/latlong.html
for the formulas
and: http://www.darrinward.com/lat-long/?id=1788764
for generating the map images.
And adding a python translation of Sga's implementation:
def bear(latA, lonA, latB, lonB):
# BEAR Finds the bearing from one lat / lon point to another.
return math.atan2(
math.sin(lonB - lonA) * math.cos(latB),
math.cos(latA) * math.sin(latB) - math.sin(latA) * math.cos(latB) * math.cos(lonB - lonA)
)
def pointToLineDistance(lon1, lat1, lon2, lat2, lon3, lat3):
lat1 = math.radians(lat1)
lat2 = math.radians(lat2)
lat3 = math.radians(lat3)
lon1 = math.radians(lon1)
lon2 = math.radians(lon2)
lon3 = math.radians(lon3)
R = 6378137
bear12 = bear(lat1, lon1, lat2, lon2)
bear13 = bear(lat1, lon1, lat3, lon3)
dis13 = distance( (lat1, lon1), (lat3, lon3)).meters
# Is relative bearing obtuse?
if math.fabs(bear13 - bear12) > (math.pi / 2):
return dis13
# Find the cross-track distance.
dxt = math.asin(math.sin(dis13 / R) * math.sin(bear13 - bear12)) * R
# Is p4 beyond the arc?
dis12 = distance((lat1, lon1), (lat2, lon2)).meters
dis14 = math.acos(math.cos(dis13 / R) / math.cos(dxt / R)) * R
if dis14 > dis12:
return distance((lat2, lon2), (lat3, lon3)).meters
return math.fabs(dxt)
Adding a Java version to wdickerson answer:
public static double pointToLineDistance(double lon1, double lat1, double lon2, double lat2, double lon3, double lat3) {
lat1 = Math.toRadians(lat1);
lat2 = Math.toRadians(lat2);
lat3 = Math.toRadians(lat3);
lon1 = Math.toRadians(lon1);
lon2 = Math.toRadians(lon2);
lon3 = Math.toRadians(lon3);
// Earth's radius in meters
double R = 6371000;
// Prerequisites for the formulas
double bear12 = bear(lat1, lon1, lat2, lon2);
double bear13 = bear(lat1, lon1, lat3, lon3);
double dis13 = dis(lat1, lon1, lat3, lon3);
// Is relative bearing obtuse?
if (Math.abs(bear13 - bear12) > (Math.PI / 2))
return dis13;
// Find the cross-track distance.
double dxt = Math.asin(Math.sin(dis13 / R) * Math.sin(bear13 - bear12)) * R;
// Is p4 beyond the arc?
double dis12 = dis(lat1, lon1, lat2, lon2);
double dis14 = Math.acos(Math.cos(dis13 / R) / Math.cos(dxt / R)) * R;
if (dis14 > dis12)
return dis(lat2, lon2, lat3, lon3);
return Math.abs(dxt);
}
private static double dis(double latA, double lonA, double latB, double lonB) {
double R = 6371000;
return Math.acos(Math.sin(latA) * Math.sin(latB) + Math.cos(latA) * Math.cos(latB) * Math.cos(lonB - lonA)) * R;
}
private static double bear(double latA, double lonA, double latB, double lonB) {
// BEAR Finds the bearing from one lat / lon point to another.
return Math.atan2(Math.sin(lonB - lonA) * Math.cos(latB), Math.cos(latA) * Math.sin(latB) - Math.sin(latA) * Math.cos(latB) * Math.cos(lonB - lonA));
}
For 100 - 1000m spherical problems, it is easy to just convert to
cartesian space, using a equirectangular projection.
Then it continues with school mathematics:
Use the function "distance from line segment" which is easy to find ready implemented.
This fucntion uses (and sometimes returns) a relative forward/backward position for the projected point X on the line A,B. The value is
in the interval [0,1] if the projected point is inside the line segment.
it is negative if X is outside before A,
it is >1 if outside after B.
If the relative position is between 0,1 the normal distance is taken, if outside the shorter distance of the both start and line-end points, A,B.
An example of such / or very similar an cartesian implementaion is Shortest distance between a point and a line segment
/**
* Calculates the euclidean distance from a point to a line segment.
*
* #param v the point
* #param a start of line segment
* #param b end of line segment
* #return an array of 2 doubles:
* [0] distance from v to the closest point of line segment [a,b],
* [1] segment coeficient of the closest point of the segment.
* Coeficient values < 0 mean the closest point is a.
* Coeficient values > 1 mean the closest point is b.
* Coeficient values between 0 and 1 mean how far along the segment the closest point is.
*
* #author Afonso Santos
*/
public static
double[]
distanceToSegment( final R3 v, final R3 a, final R3 b )
{
double[] results = new double[2] ;
final R3 ab_ = b.sub( a ) ;
final double ab = ab_.modulus( ) ;
final R3 av_ = v.sub( a ) ;
final double av = av_.modulus( ) ;
if (ab == 0.0) // a and b coincide
{
results[0] = av ; // Distance
results[1] = 0.0 ; // Segment coeficient.
}
else
{
final double avScaProjAb = av_.dot(ab_) / ab ;
final double abCoeficient = results[1] = avScaProjAb / ab ;
if (abCoeficient <= 0.0) // Point is before start of the segment ?
results[0] = av ; // Use distance to start of segment.
else if (abCoeficient >= 1.0) // Point is past the end of the segment ?
results[0] = v.sub( b ).modulus() ; // Use distance to end of segment.
else // Point is within the segment's start/end perpendicular boundaries.
{
if (avScaProjAb >= av) // Test to avoid machine float representation epsilon rounding errors that would result in expection on sqrt.
results[0] = 0.0 ; // a, b and v are colinear.
else
results[0] = Math.sqrt( av * av - avScaProjAb * avScaProjAb ) ; // Perpendicular distance from point to segment.
}
}
return results ;
}
the above method requires cartesian 3D space arguments and you asked to use lat/lon arguments. To do the conversion use
/**
* Calculate 3D vector (from center of earth).
*
* #param latDeg latitude (degrees)
* #param lonDeg longitude (degrees)
* #param eleMtr elevation (meters)
* #return 3D cartesian vector (from center of earth).
*
* #author Afonso Santos
*/
public static
R3
cartesian( final double latDeg, final double lonDeg, final double eleMtr )
{
return versor( latDeg, lonDeg ).scalar( EARTHMEANRADIUS_MTR + eleMtr ) ;
}
For the rest of the 3D/R3 code or how to calculate distance to a path/route/track check
https://sourceforge.net/projects/geokarambola/
Adding an ObjectiveC translation of wdickerson implementation:
#define DEGREES_RADIANS(angle) ((angle) / 180.0 * M_PI)
#define RADIANS_DEGREES(angle) ((angle) / M_PI * 180)
- (double)crossArcFromCoord:(CLLocationCoordinate2D)fromCoord usingArcFromCoord:(CLLocationCoordinate2D)arcCoord1 toArcCoord:(CLLocationCoordinate2D)arcCoord2 {
fromCoord.latitude = DEGREES_RADIANS(fromCoord.latitude);
fromCoord.longitude = DEGREES_RADIANS(fromCoord.longitude);
arcCoord1.latitude = DEGREES_RADIANS(arcCoord1.latitude);
arcCoord1.longitude = DEGREES_RADIANS(arcCoord1.longitude);
arcCoord2.latitude = DEGREES_RADIANS(arcCoord2.latitude);
arcCoord2.longitude = DEGREES_RADIANS(arcCoord2.longitude);
double R = 6371000; // Earth's radius in meters
// Prerequisites for the formulas
double bear12 = [self bearFromCoord:arcCoord1 toCoord:arcCoord2];
double bear13 = [self bearFromCoord:arcCoord1 toCoord:fromCoord];
double dis13 = [self distFromCoord:arcCoord1 toCoord:fromCoord];
double diff = fabs(bear13 - bear12);
if (diff > M_PI) {
diff = 2 * M_PI - diff;
}
// Is relative bearing obtuse?
if (diff > (M_PI/2)) {
return dis13;
}
// Find the cross-track distance
double dxt = asin(sin(dis13 / R) * sin(bear13 - bear12)) * R;
// Is p4 beyond the arc?
double dis12 = [self distFromCoord:arcCoord1 toCoord:arcCoord2];
double dis14 = acos(cos(dis13 / R) / cos(dxt / R)) * R;
if (dis14 > dis12) {
return [self distFromCoord:arcCoord2 toCoord:fromCoord];
}
return fabs(dxt);
}
- (double)distFromCoord:(CLLocationCoordinate2D)coord1 toCoord:(CLLocationCoordinate2D)coord2 {
double R = 6371000;
return acos(sin(coord1.latitude) * sin(coord2.latitude) + cos(coord1.latitude) * cos(coord2.latitude) * cos(coord2.longitude - coord2.longitude)) * R;
}
- (double)bearFromCoord:(CLLocationCoordinate2D)fromCoord toCoord:(CLLocationCoordinate2D)toCoord {
return atan2(sin(toCoord.longitude - fromCoord.longitude) * cos(toCoord.latitude),
cos(fromCoord.latitude) * sin(toCoord.latitude) - (sin(fromCoord.latitude) * cos(toCoord.latitude) * cos(toCoord.longitude - fromCoord.longitude)));
}
Adding a python+numpy implementation (now you can pass your longitudes and latitudes as arrays and compute all your distances simultaneously without loops).
def _angularSeparation(long1, lat1, long2, lat2):
"""All radians
"""
t1 = np.sin(lat2/2.0 - lat1/2.0)**2
t2 = np.cos(lat1)*np.cos(lat2)*np.sin(long2/2.0 - long1/2.0)**2
_sum = t1 + t2
if np.size(_sum) == 1:
if _sum < 0.0:
_sum = 0.0
else:
_sum = np.where(_sum < 0.0, 0.0, _sum)
return 2.0*np.arcsin(np.sqrt(_sum))
def bear(latA, lonA, latB, lonB):
"""All radians
"""
# BEAR Finds the bearing from one lat / lon point to another.
result = np.arctan2(np.sin(lonB - lonA) * np.cos(latB),
np.cos(latA) * np.sin(latB) - np.sin(latA) * np.cos(latB) * np.cos(lonB - lonA)
)
return result
def pointToLineDistance(lon1, lat1, lon2, lat2, lon3, lat3):
"""All radians
points 1 and 2 define an arc segment,
this finds the distance of point 3 to the arc segment.
"""
result = lon1*0
needed = np.ones(result.size, dtype=bool)
bear12 = bear(lat1, lon1, lat2, lon2)
bear13 = bear(lat1, lon1, lat3, lon3)
dis13 = _angularSeparation(lon1, lat1, lon3, lat3)
# Is relative bearing obtuse?
diff = np.abs(bear13 - bear12)
if np.size(diff) == 1:
if diff > np.pi:
diff = 2*np.pi - diff
if diff > (np.pi / 2):
return dis13
else:
solved = np.where(diff > (np.pi / 2))[0]
result[solved] = dis13[solved]
needed[solved] = 0
# Find the cross-track distance.
dxt = np.arcsin(np.sin(dis13) * np.sin(bear13 - bear12))
# Is p4 beyond the arc?
dis12 = _angularSeparation(lon1, lat1, lon2, lat2)
dis14 = np.arccos(np.cos(dis13) / np.cos(dxt))
if np.size(dis14) == 1:
if dis14 > dis12:
return _angularSeparation(lon2, lat2, lon3, lat3)
else:
solved = np.where(dis14 > dis12)[0]
result[solved] = _angularSeparation(lon2[solved], lat2[solved], lon3[solved], lat3[solved])
if np.size(lon1) == 1:
return np.abs(dxt)
else:
result[needed] = np.abs(dxt[needed])
return result
I want to work out the distance between 2 latlon points.
The simple distance formula http://www.purplemath.com/modules/distform.htm is not correct because we are dealing with 2 different measures (lat and lon).
Is there a standard solution to this problem?
use Haversine formula.
see this link http://www.movable-type.co.uk/scripts/latlong.html
try this,
This uses the ‘haversine’ formula to calculate great-circle distances between the two points – that is, the shortest distance over the earth’s surface – giving an ‘as-the-crow-flies’ distance between the points (ignoring any hills!).
Haversine formula:
R = earth’s radius (mean radius = 6,371km)
Δlat = lat2− lat1
Δlong = long2− long1
a = sin²(Δlat/2) + cos(lat1).cos(lat2).sin²(Δlong/2)
c = 2.atan2(√a, √(1−a))
d = R.c
or go with the link,http://www.movable-type.co.uk/scripts/latlong.html
Try this javascript haversine function alongside the torad() helper function, which I use for my map app
function calculateHaversineDistance(lat1x, lon1, lat2x, lon2) {
var R = 6371; // km
var dLat = toRad(lat2x-lat1x);
var dLon = toRad(lon2-lon1);
var lat1 = toRad(lat1x);
var lat2 = toRad(lat2x);
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return R * c;
}
function toRad(x) {
return x * Math.PI / 180;
}
Hope this helps.
I am developing an iphone application which uses google API's.I have a set of latitudes and logitudes .I need to find the South west and North East points from these points .How can i do this?
thanks in advance
Given:
A point (LAT, LNG)
A distance or radius DIST
1° of latitude ~= 69 miles ~= 111 kms
1° of longitude ~= cos(latitude)*69 ~= cos(latitude)*111
The SW point is:
lng_sw = LNG - (DIST / (abs(cos(radians(LAT))) * 111))
lat_sw = LAT - (DIST / 111)
The NE point is:
lng_ne = LNG + (DIST / (abs(cos(radians(LAT))) * 111))
lat_ne = LAT + (DIST / 111)
If you use miles as your unit of measure use 69 instead of 111.
This is C# code if anybody needs
private double DegreeToRadian(double angle) {
return Math.PI * angle / 180.0;
}
private bool CalculateNeSw(double distance, double lat, double lng, out MapPoint[] points) {
/*
* 1° of latitude ~= 69 miles ~= 111 kms, 1° of longitude ~= cos(latitude)*69 ~= cos(latitude)*111
* SW.LNG = LNG - (DIST / abs(cos(radians(LAT))) * 111), SW.LAT = LAT - (DIST / 111)
* NE.LNG = LNG + (DIST / abs(cos(radians(LAT))) * 111), NE.LAT = LAT + (DIST / 111)
*/
points = new MapPoint[2];
try {
double deltaLat = distance / 69;
double deltaLng = distance / Math.Abs(Math.Cos(DegreeToRadian(lat)) * 69);
/* South-West */
points[1] = new MapPoint {
Lng = (lng - deltaLng).ToString(),
Lat = (lat - deltaLat).ToString(),
IsSet = true,
FormattedAddress = "South-West"
};
/* North-East */
points[0] = new MapPoint {
Lng = (lng + deltaLng).ToString(),
Lat = (lat + deltaLat).ToString(),
IsSet = true,
FormattedAddress = "North-East"
};
return true;
}
catch (Exception ex) {
return false;
}}
Notes:
MapPoint is a simple Data class with Lat/Lon properties
I used miles ==> 69