Rewrite loop as a mapcar - macros

Looking at Practical Common Lisp, we're looking at a simple automated unit test framework. We're trying to write a macro to be used as such:
(check (= (+ 1 2) 3) (= (- 1 4) 9))
This should expand to something using a previously defined function report-result. The suggested implementation is:
(defmacro check (&body forms)
`(progn
,#(loop for f in forms collect `(report-result ,f ',f))))
However, that expansion seems rather procedural to me. I wanted to replace the loop with a mapcar to expand to something like this:
(mapcar #'(lambda (form) (report-result form 'form)) (list form-1 ... form-n))
However, I'm clearly lacking the macro-writing skills to do so. Can someone come up with one such macro?
In case it's relevant, this is the definition of report-result:
(defun report-result (result form)
(format t "~:[FAIL~;pass~] ... ~a~%" result form))

It's indeed fairly simple: you just place the collect expression into the body of your mapcar:
(defmacro check (&body forms)
`(progn
,#(mapcar #'(lambda (form)
`(report-result ,form ',form))
forms)))
You don't really need to know anything about the "macro-y" stuff that's going on, in order to do the replacement you want, which is simply replacing a loop with some other equivalent expression: it will work just as well in a macro context as it would outside.
If you want to expand to a mapcar you can, but there's no real reason to do so, since the list's size is known at compile time. Here's what that would look like:
(defmacro check (&body forms)
`(let ((results (list ,#(mapcar #'(lambda (form)
`(list ,form ',form))
forms))))
(mapcar #'(lambda (result)
(report-result (car result) (cadr result)))
results)))
Which expands like so
> (macroexpand-1 '(check (+ 1 2) (* 2 3)))
(let ((results (list (list (+ 1 2) '(+ 1 2))
(list (* 2 3) '(* 2 3)))))
(mapcar #'(lambda (result) (report-result (car result) (cadr result)))
results))
Which as you can see is rather awkward: the macro already has the forms like (+ 1 2) available to it, but in order to preserve them to runtime for the mapcar lambda to see, you have to emit the input form twice. And you have to produce the whole list to map over, rather than just producing a list that's "finished" to begin with. Additionally, this produces a list as output, and requires having all the inputs and outputs in memory at once: the original macro with progn produced the inputs and outputs one at a time, and discarded them when finished.

Related

Common Lisp: Destructure a list in first, rest, last (like Python iterable unpacking)

Exercise 6.36 of David Touretzky's Common Lisp book asks for a function swap-first-last that swaps the first and last argument of any list. I feel really stupid right now, but I am unable to solve this with destructuring-bind.
How can I do what in Python would be first, *rest, last = (1,2,3,4) (iterable unpacking) in Common Lisp/with destructuring-bind?
After all trying out, and with some comments by #WillNess (thanks!) I came up with this idea:
macro bind
The idea is trying to subdivide the list and use the &rest functionality of the lambda list in destructuring-bind, however, using the shorter . notation - and using butlast and the car-last combination.
(defmacro bind ((first _rest last) expr &body body)
`(destructuring-bind ((,first . ,_rest) ,last)
`(,,(butlast expr) ,,(car (last expr)))
,#body)))
usage:
(bind (f _rest l) (list 1 2 3 4)
(list f _rest l))
;; => (1 (2 3) 4)
My original answer
There is no so elegant possibility like for Python.
destructuring-bind cannot bind more differently than lambda can: lambda-lists take only the entire rest as &rest <name-for-rest>.
No way there to take the last element out directly.
(Of course, no way, except you write a macro extra for this kind of problems).
(destructuring-bind (first &rest rest) (list 1 2 3 4)
(let* ((last (car (last rest)))
(*rest (butlast rest)))
(list first *rest last)))
;;=> (1 (2 3) 4)
;; or:
(destructuring-bind (first . rest) (list 1 2 3 4)
(let* ((last (car (last rest)))
(*rest (butlast rest)))
(list first *rest last)))
But of course, you are in lisp, you could theoretically write macros to
destructuring-bind in a more sophisticated way ...
But then, destructuring-bind does not lead to much more clarity than:
(defparameter *l* '(1 2 3 4))
(let ((first (car *l*))
(*rest (butlast (cdr *l*)))
(last (car (last *l*))))
(list first *rest last))
;;=> (1 (2 3) 4)
The macro first-*rest-last
To show you, how quickly in common lisp such a macro is generated:
;; first-*rest-last is a macro which destructures list for their
;; first, middle and last elements.
;; I guess more skilled lisp programmers could write you
;; kind of a more generalized `destructuring-bind` with some extra syntax ;; that can distinguish the middle pieces like `*rest` from `&rest rest`.
;; But I don't know reader macros that well yet.
(ql:quickload :alexandria)
(defmacro first-*rest-last ((first *rest last) expr &body body)
(let ((rest))
(alexandria:once-only (rest)
`(destructuring-bind (,first . ,rest) ,expr
(destructuring-bind (,last . ,*rest) (nreverse ,rest)
(let ((,*rest (nreverse ,*rest)))
,#body))))))
;; or an easier definition:
(defmacro first-*rest-last ((first *rest last) expr &body body)
(alexandria:once-only (expr)
`(let ((,first (car ,expr))
(,*rest (butlast (cdr ,expr)))
(,last (car (last ,expr))))
,#body))))
Usage:
;; you give in the list after `first-*rest-last` the name of the variables
;; which should capture the first, middle and last part of your list-giving expression
;; which you then can use in the body.
(first-*rest-last (a b c) (list 1 2 3 4)
(list a b c))
;;=> (1 (2 3) 4)
This macro allows you to give any name for the first, *rest and last part of the list, which you can process further in the body of the macro,
hopefully contributing to more readability in your code.

What does gensym do in Lisp?

contextualization: I've been doing a university project in which I have to write a parser for regular expressions and build the corresponding epsilon-NFA. I have to do this in Prolog and Lisp.
I don't know if questions like this are allowed, if not I apologize.
I heard some of my classmates talking about how they used the function gensym for that, I asked them what it did and even checked up online but I literally can't understand what this function does neither why or when is best to use it.
In particular, I'm more intrested in what it does in Lisp.
Thank you all.
GENSYM creates unique symbols. Each call creates a new symbol. The symbol usually has a name which includes a number, which is counted up. The name is also unique (the symbol itself is already unique) with a number, so that a human reader can identify different uninterned symbols in the source code.
CL-USER 39 > (gensym)
#:G1083
CL-USER 40 > (gensym)
#:G1084
CL-USER 41 > (gensym)
#:G1085
CL-USER 42 > (gensym)
#:G1086
gensym is often used in Lisp macros for code generation, when the macro needs to create new identifiers, which then don't clash with existing identifiers.
Example: we are going to double the result of a Lisp form and we are making sure that the Lisp form itself will be computed only once. We do that by saving the value in a local variable. The identifier for the local variable will be computed by gensym.
CL-USER 43 > (defmacro double-it (it)
(let ((new-identifier (gensym)))
`(let ((,new-identifier ,it))
(+ ,new-identifier ,new-identifier))))
DOUBLE-IT
CL-USER 44 > (macroexpand-1 '(double-it (cos 1.4)))
(LET ((#:G1091 (COS 1.4)))
(+ #:G1091 #:G1091))
T
CL-USER 45 > (double-it (cos 1.4))
0.33993432
a little clarification of the existing answers (as the op is not yet aware of the typical common lisp macros workflow):
consider the macro double-it, proposed by mr. Joswig. Why would we bother creating this whole bunch of let? when it can be simply:
(defmacro double-it (it)
`(+ ,it ,it))
and ok, it seems to be working:
CL-USER> (double-it 1)
;;=> 2
but look at this, we want to increment x and double it
CL-USER> (let ((x 1))
(double-it (incf x)))
;;=> 5
;; WHAT? it should be 4!
the reason can be seen in macro expansion:
(let ((x 1))
(+ (setq x (+ 1 x)) (setq x (+ 1 x))))
you see, as the macro doesn't evaluate form, just splices it into generated code, it leads to incf being executed twice.
the simple solution is to bind it somewhere, and then double the result:
(defmacro double-it (it)
`(let ((x ,it))
(+ x x)))
CL-USER> (let ((x 1))
(double-it (incf x)))
;;=> 4
;; NICE!
it seems to be ok now. really it expands like this:
(let ((x 1))
(let ((x (setq x (+ 1 x))))
(+ x x)))
ok, so what about the gensym thing?
let's say, you want to print some message, before doubling your value:
(defmacro double-it (it)
`(let* ((v "DOUBLING IT")
(val ,it))
(princ v)
(+ val val)))
CL-USER> (let ((x 1))
(double-it (incf x)))
;;=> DOUBLING IT
;;=> 4
;; still ok!
but what if you accidentally name value v instead of x:
CL-USER> (let ((v 1))
(double-it (incf v)))
;;Value of V in (+ 1 V) is "DOUBLING IT", not a NUMBER.
;; [Condition of type SIMPLE-TYPE-ERROR]
It throws this weird error! Look at the expansion:
(let ((v 1))
(let* ((v "DOUBLING IT") (val (setq v (+ 1 v))))
(princ v)
(+ val val)))
it shadows the v from the outer scope with string, and when you are trying to add 1, well it obviously can't. Too bad.
another example, say you want to call the function twice, and return 2 results as a list:
(defmacro two-funcalls (f v)
`(let ((x ,f))
(list (funcall x ,v) (funcall x ,v))))
CL-USER> (let ((y 10))
(two-funcalls (lambda (z) z) y))
;;=> (10 10)
;; OK
CL-USER> (let ((x 10))
(two-funcalls (lambda (z) z) x))
;; (#<FUNCTION (LAMBDA (Z)) {52D2D4AB}> #<FUNCTION (LAMBDA (Z)) {52D2D4AB}>)
;; NOT OK!
this class of bugs is very nasty, since you can't easily say what's happened.
What is the solution? Obviously not to name the value v inside macro. You need to generate some sophisticated name that no one would reproduce in their code, like my-super-unique-value-identifier-2019-12-27. This would probably save you, but still you can't really be sure. That's why gensym is there:
(defmacro two-funcalls (f v)
(let ((fname (gensym)))
`(let ((,fname ,f))
(list (funcall ,fname ,v) (funcall ,fname ,v)))))
expanding to:
(let ((y 10))
(let ((#:g654 (lambda (z) z)))
(list (funcall #:g654 y) (funcall #:g654 y))))
you just generate the var name for the generated code, it is guaranteed to be unique (meaning no two gensym calls would generate the same name for the runtime session),
(loop repeat 3 collect (gensym))
;;=> (#:G645 #:G646 #:G647)
it still can potentially be clashed with user var somehow, but everybody knows about the naming and doesn't call the var #:GXXXX, so you can consider it to be impossible. You can further secure it, adding prefix
(loop repeat 3 collect (gensym "MY_GUID"))
;;=> (#:MY_GUID651 #:MY_GUID652 #:MY_GUID653)
GENSYM will generate a new symbol at each call. It will be garanteed, that the symbol did not exist before it will be generated and that it will never be generated again. You may specify a symbols prefix, if you like:
CL-USER> (gensym)
#:G736
CL-USER> (gensym "SOMETHING")
#:SOMETHING737
The most common use of GENSYM is generating names for items to avoid name clashes in macro expansion.
Another common purpose is the generaton of symbols for the construction of graphs, if the only thing demand you have is to attach a property list to them, while the name of the node is not of interest.
I think, the task of NFA-generation could make good use of the second purpose.
This is a note to some of the other answers, which I think are fine. While gensym is the traditional way of making new symbols, in fact there is another way which works perfectly well and is often better I find: make-symbol:
make-symbol creates and returns a fresh, uninterned symbol whose name is the given name. The new-symbol is neither bound nor fbound and has a null property list.
So, the nice thing about make-symbol is it makes a symbol with the name you asked for, exactly, without any weird numerical suffix. This can be helpful when writing macros because it makes the macroexpansion more readable. Consider this simple list-collection macro:
(defmacro collecting (&body forms)
(let ((resultsn (make-symbol "RESULTS"))
(rtailn (make-symbol "RTAIL")))
`(let ((,resultsn '())
(,rtailn nil))
(flet ((collect (it)
(let ((new (list it)))
(if (null ,rtailn)
(setf ,resultsn new
,rtailn new)
(setf (cdr ,rtailn) new
,rtailn new)))
it))
,#forms
,resultsn))))
This needs two bindings which the body can't refer to, for the results, and the last cons of the results. It also introduces a function in a way which is intentionally 'unhygienic': inside collecting, collect means 'collect something'.
So now
> (collecting (collect 1) (collect 2) 3)
(1 2)
as we want, and we can look at the macroexpansion to see that the introduced bindings have names which make some kind of sense:
> (macroexpand '(collecting (collect 1)))
(let ((#:results 'nil) (#:rtail nil))
(flet ((collect (it)
(let ((new (list it)))
(if (null #:rtail)
(setf #:results new #:rtail new)
(setf (cdr #:rtail) new #:rtail new)))
it))
(collect 1)
#:results))
t
And we can persuade the Lisp printer to tell us that in fact all these uninterned symbols are the same:
> (let ((*print-circle* t))
(pprint (macroexpand '(collecting (collect 1)))))
(let ((#2=#:results 'nil) (#1=#:rtail nil))
(flet ((collect (it)
(let ((new (list it)))
(if (null #1#)
(setf #2# new #1# new)
(setf (cdr #1#) new #1# new)))
it))
(collect 1)
#2#))
So, for writing macros I generally find make-symbol more useful than gensym. For writing things where I just need a symbol as an object, such as naming a node in some structure, then gensym is probably more useful. Finally note that gensym can be implemented in terms of make-symbol:
(defun my-gensym (&optional (thing "G"))
;; I think this is GENSYM
(check-type thing (or string (integer 0)))
(let ((prefix (typecase thing
(string thing)
(t "G")))
(count (typecase thing
((integer 0) thing)
(t (prog1 *gensym-counter*
(incf *gensym-counter*))))))
(make-symbol (format nil "~A~D" prefix count))))
(This may be buggy.)

Creating equivalent to incf as macro-function in lisp

I'm just starting to learn the concept of macro functions.
My teacher has asked us to create a macro function that would function exactly the same way as incf.
Here is an example he has given us for pop
(defmacro mypop (nom)
(list 'prog1 (list 'car nom) (list 'setq nom (list 'cdr nom))) )
Here is the regular function I'm trying to turn into a macro:
(defun iincf (elem &optional num )
(cond
((not num) (setq elem (+ 1 elem)))
(t (setq elem (+ num elem))) ) )
Here is my attempt at turning it into a macro :
(defmacro myincf (elem &optional num )
(list 'cond
((list 'not num) (list 'setq elem (list '+ 1 elem)))
(t (list 'setq elem (list '+ num elem))) ) )
However, I get this error and I don't know why:
*** - system::%expand-form: (list 'not num) should be a lambda expression
Also, I'm not sure whether my function would actually change the value of the variable at the top level.
So here are my 2 questions:
Why do I get this error?
Is the function I'm trying to turn into a macro fine? (if successfully turning it into a macro function, would it do what I intend to?)
PS: I know this exercise would probably infringe many common rules in lisp, but this is just for practice. Thanks! :)
The reason for the error is that your syntax is invalid:
((list ...) ...)
(t (list ...))
The first element should be a function name or a lambda expression, so you would need to change it to something like
(list (list ...) ...)
(list t (list ...))
Although the macro isn't a very good one yet. First of all, the backquote syntax would make the code much more readable. It allows you to write a template where only the specified forms are evaluated. For example, the given MYPOP macro would look like
(defmacro mypop (nom)
`(prog1 (car ,nom)
(setq ,nom (cdr ,nom))))
Only the forms with a comma before them are evaluated. Same with your macro:
(defmacro myincf (elem &optional num)
`(cond
((not ,num) (setq ,elem (+ 1 ,elem)))
(t (setq ,elem (+ ,num ,elem)))))
The COND shouldn't really be part of the expansion though. It should be evaluated during macroexpansion, and only the SETQ form from one of the branches returned.
(defmacro myincf (elem &optional num)
(cond
((not num) `(setq ,elem (+ 1 ,elem)))
(t `(setq ,elem (+ ,num ,elem)))))
The only difference between the two branches is that the first one defaults to 1 for NUM. A simpler way to achieve the same would be to give NUM a default value.
(defmacro myincf (elem &optional (num 1))
`(setq ,elem (+ ,num ,elem)))
Of course, the standard INCF is a bit more complex, since it works for all sorts of places (not just variables) and ensures that the subforms of the place are evaluated only once. However, since the MYPOP example doesn't handle those, I don't think you have to either.
If you want to, a simple way to define such a macro would be
(define-modify-macro myincf (&optional (num 1)) +)
Or you could do the same manually with something like
(defmacro myincf (place &optional (num 1) &environment env)
(multiple-value-bind (dummies vals store setter getter)
(get-setf-expansion place env)
`(let* (,#(mapcar #'list dummies vals)
(,(first store) (+ ,getter ,num)))
,setter)))
But using DEFINE-MODIFY-MACRO would be preferrable in a real program (shorter code, less bugs). You could read about GET-SETF-EXPANSION and DEFINE-MODIFY-MACRO if you're interested.

How to implement a short-circuited "and" macro in Common Lisp?

Assume that the macro would take the boolean types a and b . If a is nil, then the macro should return nil (without ever evaluating b), otherwise it returns b. How do you do this?
This really depends on what you can use.
E.g., is or available? if? cond?
Here is one example:
(defmacro and (a b)
`(if ,a ,b nil)
EDIT. In response to a comment, or is more complicated because we have to avoid double evaluation:
(defmacro or (a b)
(let ((v (gensym "OR")))
`(let ((,v ,a))
(if ,v ,v ,b))))
sds's answer is nice and concise, but it has two limitations:
It only works with two arguments, whereas the built in and and or take any number of arguments. It's not too hard to update the solution to take any number of arguments, but it would be a bit more complicated.
More importantly, it's based very directly in terms of delayed operations that are already present in the language. I.e., it takes advantage of the fact that if doesn't evaluate the then or else parts until it has first evaluated the condition.
It might be a good exercise, then, to note that when a macro needs to delay evaluation of some forms, it's often the simplest strategy (in terms of implementation, but not necessarily the most efficient) to use a macro that expands to a function call that takes a function. For instance, a naive implementation of with-open-file might be:
(defun %call-with-open-file (pathname function)
(funcall function (open pathname)))
(defmacro my-with-open-file ((var pathname) &body body)
`(%call-with-open-file
,pathname
(lambda (,var)
,#body)))
Using a technique like this, you can easily get a binary and (and or):
(defun %and (a b)
(if (funcall a)
(funcall b)
nil))
(defmacro my-and (a b)
`(%and (lambda () ,a)
(lambda () ,b)))
CL-USER> (my-and t (print "hello"))
"hello" ; printed output
"hello" ; return value
CL-USER> (my-and nil (print "hello"))
NIL
or is similar:
(defun %or (a b)
(let ((aa (funcall a)))
(if aa
aa
(funcall b))))
(defmacro my-or (a b)
`(%or (lambda () ,a)
(lambda () ,b)))
To handle the n-ary case (since and and or actually take any number of arguments), you could write a function that takes a list of lambda functions and calls each of them until you get to one that would short circuit (or else reaches the end). Common Lisp actually already has functions like that: every and some. With this approach, you could implement and in terms of every by wrapping all the arguments in lambda functions:
(defmacro my-and (&rest args)
`(every #'funcall
(list ,#(mapcar #'(lambda (form)
`(lambda () ,form))
args))))
For instance, with this implementation,
(my-and (listp '()) (evenp 3) (null 'x))
expands to:
(EVERY #'FUNCALL
(LIST (LAMBDA () (LISTP 'NIL))
(LAMBDA () (EVENP 3))
(LAMBDA () (NULL 'X))))
Since all the forms are now wrapped in lambda functions, they won't get called until every gets that far.
The only difference is that and is specially defined to return the value of the last argument if all the preceding ones are true (e.g., (and t t 3) returns 3, not t, whereas the specific return value of every is not specified (except that it would be a true value).
With this approach, implementing or (using some) is no more complicated than implementing and:
(defmacro my-or (&rest args)
`(some #'funcall ,#(mapcar #'(lambda (form)
`(lambda () ,form))
args)))

Is there an existing lisp macro for building up a list?

In Python, I am able to use yield to build up a list without having to define a temporary variable:
def get_chars_skipping_bar(word):
while word:
# Imperative logic which can't be
# replaced with a for loop.
if word[:3] == 'bar':
word = word[3:]
else:
yield foo[0]
foo = foo[1:]
In elisp, I can't see any way of doing this, either built-in or using any pre-existing libraries. I'm forced to manually build a up a list and call nreverse on it. Since this is a common pattern, I've written my own macro:
(require 'dash)
(require 'cl)
(defun replace-calls (form x func)
"Replace all calls to X (a symbol) in FORM,
calling FUNC to generate the replacement."
(--map
(cond
((consp it)
(if (eq (car it) x)
(funcall func it)
(replace-calls it x func)))
(:else it))
form))
(defmacro with-results (&rest body)
"Execute BODY, which may contain forms (yield foo).
Return a list built up from all the values passed to yield."
(let ((results (gensym "results")))
`(let ((,results (list)))
,#(replace-calls body 'yield
(lambda (form) `(push ,(second form) ,results)))
(nreverse ,results))))
Example usage:
(setq foo "barbazbarbarbiz")
(with-results
(while (not (s-equals? "" foo))
;; Imperative logic which can't be replaced with cl-loop's across.
(if (s-starts-with? "bar" foo)
(setq foo (substring foo 3))
(progn
(yield (substring foo 0 1))
(setq foo (substring foo 1))))))
There must be a better way of doing this, or an existing solution, somewhere in elisp, cl.el, or a library.
The Python function is actually a generator. In ANSI Common Lisp, we would usually reach for a lexical closure to simulate a generator, or else us a library to define generators directly, like Pygen. Maybe these approaches can be ported to Emacs Lisp.
AFAIK, people just use push+nreverse like you do. If you want to define your macro in a more robust way (e.g. so it doesn't misfire on something like (memq sym '(yield stop next))) you could do it as:
(defmacro with-results (&rest body)
"Execute BODY, which may contain forms (yield EXP).
Return a list built up from all the values passed to `yield'."
(let ((results (gensym "results")))
`(let ((,results '()))
(cl-macrolet ((yield (exp) `(push ,exp ,results)))
,#body)
(nreverse ,results))))
Maybe something like this:
(setq foo "barbaz")
(cl-loop for i from 0 to (1- (length foo))
collect (string (aref foo i)))
In any case, there's nothing wrong with push and nreverse.
Lisp is different from Python. yield is not used. I also see the use of coroutine-like constructs for this as a mistake. It's the equivalent of the come-from construct. Suddenly routines have multiple context dependent entry points.
In Lisp use functions/closures instead.
In Common Lisp, the LOOP macro allows efficient mappings over vectors. The following code can be abstracted to some mapping function, if preferred:
CL-USER 17 > (defun chars-without-substring (string substring)
(loop with i = 0
while (< i (length string))
when (and (>= (- (length string) i) (length substring))
(string= substring string
:start2 i
:end2 (+ i (length substring))))
do (incf i (length substring))
else
collect (prog1 (char string i) (incf i))))
CHARS-WITHOUT-SUBSTRING
CL-USER 18 > (chars-without-substring "barbazbarbarbiz" "bar")
(#\b #\a #\z #\b #\i #\z)