Related
I use a while loop to move the random points each one second as a shot from position to position. Now, how can I compare sigdB as calculated in the current step with sigdB from the previous step?
npts=1;center=[0 0];radius=1000; npts2=1;center2=[0 0];radius2=1000;
velocity = 45/3.6; velocity2 = 45/3.6;
theta = rand(npts, 1) * 2*pi;
g = 0.5 * radius + 0.5 * radius * rand(npts,1);
X_x=center(1)+g.*cos(theta); Y_y=center(2)+g.*sin(theta); XY = [X_x ,Y_y];
theta2 = rand(npts2, 1) * 2*pi; g2 = 0.5 * radius2 + 0.5 * radius2 * rand(npts2,1);
X_x2=center2(1)+g2.*cos(theta2); Y_y2=center2(2)+g.*sin(theta2); XY2 = [X_x2 ,Y_y2];
hfig = figure('Color', 'w'); hax = axes('Parent', hfig);
hdots(1) = plot(XY(1,1),XY(1,2),'Parent', hax,'Marker', '.','Color', 'k','LineStyle', 'none','MarkerSize', 10); hold(hax, 'on'); axis(hax, 'equal');
hdots(2) = plot(XY2(1,1),XY2(1,2),'Parent', hax,'Marker', '.','Color', 'r','LineStyle', 'none','MarkerSize', 10); hold(hax, 'on'); axis(hax, 'equal');
% plot circle to scatter the points in it
t = linspace(0, 2*pi, 100); plot(radius * cos(t) + center(1),radius * sin(t) + center(2))
while all(ishghandle(hdots))
distPoints = pdist2(XY,XY2,'euclidean');
sig=sum(power*(distPoints).^-2);
sigdB=10*log(sig);
direction2 = rand(npts, 1) * 2 *pi; direction = rand(npts, 1) * 2 *pi;
[XY2, direction2] = step(XY2, direction2, velocity2, radius2, center2); [XY, direction] = step(XY, direction, velocity, radius, center);
set(hdots(2), 'XData', XY2(1,1), 'YData', XY2(1,2)); set(hdots(1), 'XData', XY(1,1), 'YData', XY(1,2)); drawnow; pause (1);
end
The moment you call sigdB = (..) you overwrite its previous value. If you want to compare only the previous one, you could use a simple trick to store it separately:
while
sigdB_old = sigdB;
sigdB = 10*log(..);
% More calculations
end
i.e. store it in a temporary variable. If, on the other hand, you want to retain all previous values, you should store it in an array of appropriate size, if possible. This is usually easier in a for loop, given you know how many iterations will take place, but you could simply initialise your array "pretty large" and extend or cut-off rows/columns where needed.
I am trying to plot a geodesic on a 3D surface (tractrix) with Matlab. This worked for me in the past when I didn't need to parametrize the surface (see here). However, the tractrix called for parameterization, chain rule differentiation, and collection of u,v,x,y and f(x,y) values.
After many mistakes I think that I'm getting the right values for x = f1(u,v) and y = f2(u,v) describing a spiral right at the base of the surface:
What I can't understand is why the z value or height of the 3D plot of the curve is consistently zero, when I'm applying the same mathematical formula that allowed me to plot the surface in the first place, ie. f = #(x,y) a.* (y - tanh(y)) .
Here is the code, which runs without any errors on Octave. I'm typing a special note in upper case on the crucial calls. Also note that I have restricted the number of geodesic lines to 1 to decrease the execution time.
a = 0.3;
u = 0:0.1:(2 * pi);
v = 0:0.1:5;
[X,Y] = meshgrid(u,v);
% NOTE THAT THESE FORMULAS RESULT IN A SUCCESSFUL PLOT OF THE SURFACE:
x = a.* cos(X) ./ cosh(Y);
y = a.* sin(X) ./ cosh(Y);
z = a.* (Y - tanh(Y));
h = surf(x,y,z);
zlim([0, 1.2]);
set(h,'edgecolor','none')
colormap summer
hold on
% THESE ARE THE GENERIC FUNCTIONS (f) WHICH DON'T SEEM TO WORK AT THE END:
f = #(x,y) a.* (y - tanh(y));
f1 = #(u,v) a.* cos(u) ./ cosh(v);
f2 = #(u,v) a.* sin(u) ./ cosh(v);
dfdu = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u+eps,v)-f1(u-eps,v))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u+eps,v)-f2(u-eps,v))/(2*eps));
dfdv = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u,v+eps)-f1(u,v-eps))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u,v+eps)-f2(u,v-eps))/(2*eps));
% Normal vector to the surface:
N = #(u,v) [- dfdu(u,v), - dfdv(u,v), 1]; % Normal vec to surface # any pt.
% Some colors to draw the lines:
C = {'k','r','g','y','m','c'};
for s = 1:1 % No. of lines to be plotted.
% Starting points:
u0 = [0, u(length(u))];
v0 = [0, v(length(v))];
du0 = 0.001;
dv0 = 0.001;
step_size = 0.00005; % Will determine the progression rate from pt to pt.
eta = step_size / sqrt(du0^2 + dv0^2); % Normalization.
eps = 0.0001; % Epsilon
max_num_iter = 100000; % Number of dots in each line.
% Semi-empty vectors to collect results:
U = [[u0(s), u0(s) + eta*du0], zeros(1,max_num_iter - 2)];
V = [[v0(s), v0(s) + eta*dv0], zeros(1,max_num_iter - 2)];
for i = 2:(max_num_iter - 1) % Creating the geodesic:
ut = U(i);
vt = V(i);
xt = f1(ut,vt);
yt = f2(ut,vt);
ft = f(xt,yt);
utm1 = U(i - 1);
vtm1 = V(i - 1);
xtm1 = f1(utm1,vtm1);
ytm1 = f2(utm1,vtm1);
ftm1 = f(xtm1,ytm1);
usymp = ut + (ut - utm1);
vsymp = vt + (vt - vtm1);
xsymp = f1(usymp,vsymp);
ysymp = f2(usymp,vsymp);
fsymp = ft + (ft - ftm1);
df = fsymp - f(xsymp,ysymp); % Is the surface changing? How much?
n = N(ut,vt); % Normal vector at point t
gamma = df * n(3); % Scalar x change f x z value of N
xtp1 = xsymp - gamma * n(1); % Gamma to modulate incre. x & y.
ytp1 = ysymp - gamma * n(2);
U(i + 1) = usymp - gamma * n(1);;
V(i + 1) = vsymp - gamma * n(2);;
end
% THE PROBLEM! f(f1(U,V),f2(U,V)) below YIELDS ALL ZEROS!!! The expected values are between 0 and 1.2.
P = [f1(U,V); f2(U,V); f(f1(U,V),f2(U,V))]; % Compiling results into a matrix.
units = 35; % Determines speed (smaller, faster)
packet = floor(size(P,2)/units);
P = P(:,1: packet * units);
for k = 1:packet:(packet * units)
hold on
plot3(P(1, k:(k+packet-1)), P(2,(k:(k+packet-1))), P(3,(k:(k+packet-1))),
'.', 'MarkerSize', 5,'color',C{s})
drawnow
end
end
The answer is to Cris Luengo's credit, who noticed that the upper-case assigned to the variable Y, used for the calculation of the height of the curve z, was indeed in the parametrization space u,v as intended, and not in the manifold x,y! I don't use Matlab/Octave other than for occasional simulations, and I was trying every other syntactical permutation I could think of without realizing that f fed directly from v (as intended). I changed now the names of the different variables to make it cleaner.
Here is the revised code:
a = 0.3;
u = 0:0.1:(3 * pi);
v = 0:0.1:5;
[U,V] = meshgrid(u,v);
x = a.* cos(U) ./ cosh(V);
y = a.* sin(U) ./ cosh(V);
z = a.* (V - tanh(V));
h = surf(x,y,z);
zlim([0, 1.2]);
set(h,'edgecolor','none')
colormap summer
hold on
f = #(x,y) a.* (y - tanh(y));
f1 = #(u,v) a.* cos(u) ./ cosh(v);
f2 = #(u,v) a.* sin(u) ./ cosh(v);
dfdu = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u+eps,v)-f1(u-eps,v))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u+eps,v)-f2(u-eps,v))/(2*eps));
dfdv = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u,v+eps)-f1(u,v-eps))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u,v+eps)-f2(u,v-eps))/(2*eps));
% Normal vector to the surface:
N = #(u,v) [- dfdu(u,v), - dfdv(u,v), 1]; % Normal vec to surface # any pt.
% Some colors to draw the lines:
C = {'y','r','k','m','w',[0.8 0.8 1]}; % Color scheme
for s = 1:6 % No. of lines to be plotted.
% Starting points:
u0 = [0, -pi/2, 2*pi, 4*pi/3, pi/4, pi];
v0 = [0, 0, 0, 0, 0, 0];
du0 = [0, -0.0001, 0.001, - 0.001, 0.001, -0.01];
dv0 = [0.1, 0.01, 0.001, 0.001, 0.0005, 0.01];
step_size = 0.00005; % Will determine the progression rate from pt to pt.
eta = step_size / sqrt(du0(s)^2 + dv0(s)^2); % Normalization.
eps = 0.0001; % Epsilon
max_num_iter = 180000; % Number of dots in each line.
% Semi-empty vectors to collect results:
Uc = [[u0(s), u0(s) + eta*du0(s)], zeros(1,max_num_iter - 2)];
Vc = [[v0(s), v0(s) + eta*dv0(s)], zeros(1,max_num_iter - 2)];
for i = 2:(max_num_iter - 1) % Creating the geodesic:
ut = Uc(i);
vt = Vc(i);
xt = f1(ut,vt);
yt = f2(ut,vt);
ft = f(xt,yt);
utm1 = Uc(i - 1);
vtm1 = Vc(i - 1);
xtm1 = f1(utm1,vtm1);
ytm1 = f2(utm1,vtm1);
ftm1 = f(xtm1,ytm1);
usymp = ut + (ut - utm1);
vsymp = vt + (vt - vtm1);
xsymp = f1(usymp,vsymp);
ysymp = f2(usymp,vsymp);
fsymp = ft + (ft - ftm1);
df = fsymp - f(xsymp,ysymp); % Is the surface changing? How much?
n = N(ut,vt); % Normal vector at point t
gamma = df * n(3); % Scalar x change f x z value of N
xtp1 = xsymp - gamma * n(1); % Gamma to modulate incre. x & y.
ytp1 = ysymp - gamma * n(2);
Uc(i + 1) = usymp - gamma * n(1);;
Vc(i + 1) = vsymp - gamma * n(2);;
end
x = f1(Uc,Vc);
y = f2(Uc,Vc);
P = [x; y; f(Uc,Vc)]; % Compiling results into a matrix.
units = 35; % Determines speed (smaller, faster)
packet = floor(size(P,2)/units);
P = P(:,1: packet * units);
for k = 1:packet:(packet * units)
hold on
plot3(P(1, k:(k+packet-1)), P(2,(k:(k+packet-1))), P(3,(k:(k+packet-1))),
'.', 'MarkerSize', 5,'color',C{s})
drawnow
end
end
So I have this code to rotate and skew an image. it works well for the rotation, and the image will fit exactly in the canvas. However if I apply skewing the image doesn't fit anymore. Can someone explain how to calculate the proper array dimension for the resulting image rotated and skewed by specific angles? In particular, I'm using this 2 lines for the rotated image (and it works although I don't fully understand them). How should I modify them such as even when skewed, the final image will fit? Thanks!
rows_new = ceil(rows_init_img * abs(cos(rads)) + cols_init_img * abs(sin(rads)));
cols_new = ceil(rows_init_img * abs(sin(rads)) + cols_init_img * abs(cos(rads)));
full code
clc;
clear;
%% init values
%loading initial image
init_img = imread('name2.png');
% define rows/cols dimension of original image pixel matrix
[rows_init_img, cols_init_img,z]= size(init_img);
% skew angle in radians
sk_angle = 50;
sk_rads = 2*pi*sk_angle/360;
% rotation angle in radians
angle = 20;
rads = 2*pi*angle/360;
%% calculate size of final_image
orig_corners = [ 1, 1; 1, rows_init_img; 1, cols_init_img; rows_init_img, cols_init_img];
new_corners = uint8(zeros(size(orig_corners)));
for i = 1:size(orig_corners, 1)
for j = 1:size(orig_corners, 2)
% translate
a = i - final_origin_x;
b = j - final_origin_y;
% rotate
x = a * cos(rads) - b * sin(rads);
y = a * sin(rads) + b * cos(rads);
% skew along x axis (AFTER rotation)
x = x + sk_rads * y;
% translate
x = x + init_origin_x;
y = y + init_origin_y;
% round to turn values to positive integers
x = round(x);
y = round(y);
if (x >= 1 && y >= 1 && x <= size(orig_corners, 1) && y <= size(orig_corners, 2) )
new_corners(i, j) = init_img(x, y);
end
end
end
% calculating array dimesions such that rotated image gets fit in it exactly.
% rows_new = ceil(rows_init_img * abs(cos(rads)) + cols_init_img * abs(sin(rads)));
% cols_new = ceil(rows_init_img * abs(sin(rads)) + cols_init_img * abs(cos(rads)));
% define an array with calculated dimensions and fill the array with zeros ie.,black
% uint8 is important. without it will show noise WHY?
final_img = uint8(zeros([rows_new cols_new 3 ]));
%calculating center of original image
init_origin_x = ceil(rows_init_img/2);
init_origin_y = ceil(cols_init_img/2);
%calculating center of final image
final_origin_x = ceil( size(final_img, 1)/2 );
final_origin_y = ceil( size(final_img, 2)/2 );
%% main loop
% apply transformation to each pixel of the image
for i = 1:size(final_img ,1)
for j = 1:size(final_img, 2)
% translate
a = i - final_origin_x;
b = j - final_origin_y;
% rotate
x = a * cos(rads) - b * sin(rads);
y = a * sin(rads) + b * cos(rads);
% skew along x axis
x = x + sk_rads * y;
% translate
x = x + init_origin_x;
y = y + init_origin_y;
% round to turn values to positive integers
x = round(x);
y = round(y);
% make sure values exists (are part of the initial image) and copy
% them in the final image matrix
if (x >= 1 && y >= 1 && x <= size(init_img, 1) && y <= size(init_img, 2) )
final_img(i, j, :) = init_img(x, y, :);
end
end
end
%% display images
% original image
% figure('name','Original Image','numbertitle','off');
% imshow(init_img);
% result image
figure('name','Manipulated Image','numbertitle','off');
imshow(final_img);
updated code
clc;
clear;
%% init values
%loading initial image
init_img = imread('name2.png');
% define rows/cols dimension of original image pixel matrix
[rows_init_img, cols_init_img, z]= size(init_img);
% skew angle in radians
sk_angle = 50;
sk_rads = 2*pi*sk_angle/360;
% rotation angle in radians
angle = 20;
rads = 2*pi*angle/360;
%calculating center of original image
init_origin_x = ceil(rows_init_img/2);
init_origin_y = ceil(cols_init_img/2);
%% calculate size of final_image
orig_corners = [ 1, 1; 1, rows_init_img; 1, cols_init_img; rows_init_img, cols_init_img];
new_corners = uint8(zeros(size(orig_corners)));
for i = 1:size(orig_corners, 1)
for j = 1:size(orig_corners, 2)
% translate
a = i - final_origin_x; %at this point I don't have this variable because I can't create it yet
b = j - final_origin_y;
% rotate
x = a * cos(rads) - b * sin(rads);
y = a * sin(rads) + b * cos(rads);
% skew along x axis (AFTER rotation)
x = x + sk_rads * y;
% translate
x = x + init_origin_x;
y = y + init_origin_y;
% round to turn values to positive integers
x = round(x);
y = round(y);
if (x >= 1 && y >= 1 && x <= size(orig_corners, 1) && y <= size(orig_corners, 2) )
new_corners(i, j) = init_img(x, y);
end
end
end
% calculating array dimesions such that rotated image gets fit in it exactly.
rows_new = abs(max(new_corners(1, :)) - min(new_corners(1, :)));
cols_new = abs(max(new_corners(2, :)) - min(new_corners(2, :)));
% define an array with calculated dimensions and fill the array with zeros ie.,black
final_img = uint8(zeros([rows_new cols_new 3 ]));
%calculating center of final image
final_origin_x = ceil( size(final_img, 1)/2 );
final_origin_y = ceil( size(final_img, 2)/2 );
%% main loop
% apply transformation to each pixel of the image
for i = 1:size(final_img ,1)
for j = 1:size(final_img, 2)
% translate
a = i - final_origin_x;
b = j - final_origin_y;
% skew along x axis (BEFORE rotation)
a = a + sk_rads * b;
% rotate
x = a * cos(rads) - b * sin(rads);
y = a * sin(rads) + b * cos(rads);
% skew along x axis (AFTER rotation)
%x = x + sk_rads * y;
% translate
x = x + init_origin_x;
y = y + init_origin_y;
% round to turn values to positive integers
x = round(x);
y = round(y);
% make sure values exists (are part of the initial image) and copy
% them in the final image matrix
if (x >= 1 && y >= 1 && x <= size(init_img, 1) && y <= size(init_img, 2) )
final_img(i, j, :) = init_img(x, y, :);
end
end
end
%% display images
% original image
% figure('name','Original Image','numbertitle','off');
% imshow(init_img);
% result image
figure('name','Manipulated Image','numbertitle','off');
imshow(final_img);
I want to move a star marker along hexagon trajectory similar to "Circle trajectory" that I have added at the end of my question. Thanks.
This is the source code to that I have written yet for creating concentric hegzagons but I don't know how to move a star marker which traverses the concentric hexagons, I had written a similar simulation code for circle trajectory but I couldn't do it for hexagon.
%clc; % Clear the command window.
%close all; % Close all figures (except those of imtool.)
%clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 20;
angles = linspace(0, 360, 7);
radii = [20, 35, 50,70];
% First create and draw the hexagons.
numberOfHexagons = 4;
% Define x and y arrays. Each row is one hexagon.
% Columns are the vertices.
x1=radii(1) * cosd(angles)+50;
y1 = radii(1) * sind(angles)+50;
x2=radii(2) * cosd(angles)+50;
y2 = radii(2) * sind(angles)+50;
x3=radii(3) * cosd(angles)+50;
y3 = radii(3) * sind(angles)+50;
x4=radii(4) * cosd(angles)+50;
y4 = radii(4) * sind(angles)+50;
plot(x1 , y1, 'b');
hold on
plot(x2, y2, 'b');
hold on
plot(x3, y3, 'b');
hold on
plot(x4, y4, 'b');
hold on
% Connecting Line:
plot([70 100], [50 50],'color','b')
axis([0 100 0 100])
hold on
Circle trajectory:
% Initialization steps.
format long g;
format compact;
fontSize = 20;
r1 = 50;
r2 = 35;
r3= 20;
xc = 50;
yc = 50;
% Since arclength = radius * (angle in radians),
% (angle in radians) = arclength / radius = 5 / radius.
deltaAngle1 = 5 / r1;
deltaAngle2 = 5 / r2;
deltaAngle3 = 5 / r3;
theta1 = 0 : deltaAngle1 : (2 * pi);
theta2 = 0 : deltaAngle2 : (2 * pi);
theta3 = 0 : deltaAngle3 : (2 * pi);
x1 = r1*cos(theta1) + xc;
y1 = r1*sin(theta1) + yc;
x2 = r2*cos(theta2) + xc;
y2 = r2*sin(theta2) + yc;
x3 = r3*cos(theta3) + xc;
y3 = r3*sin(theta3) + yc;
plot(x1,y1,'color',[1 0.5 0])
hold on
plot(x2,y2,'color',[1 0.5 0])
hold on
plot(x3,y3,'color',[1 0.5 0])
hold on
% Connecting Line:
plot([70 100], [50 50],'color',[1 0.5 0])
% Set up figure properties:
% Enlarge figure to full screen.
set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0, 1, 1]);
drawnow;
axis square;
for i = 1 : length(theta1)
plot(x1(i),y1(i),'r*')
pause(0.1)
end
for i = 1 : length(theta2)
plot(x2(i),y2(i),'r*')
pause(0.1)
end
for i = 1 : length(theta3)
plot(x3(i),y3(i),'r*')
pause(0.1)
end
I would generalize your problem with parametric function for the trajectory. In it use rotation kernel which you want here few examples in C++/VCL/GDI (sorry I am not Matlab friendly but the equations should be the same in Matlab too) for circle,square and hexagon rotation kernels:
void getpnt_circle(double &x,double &y,double &pi2,double r,double t) // (x,y) = circle(r,t) t=<0,1>
{
pi2=2.0*M_PI; // circumference(r=1) 6.283185307179586476925286766559
t*=pi2;
x=r*cos(t);
y=r*sin(t);
}
//---------------------------------------------------------------------------
void getpnt_square(double &x,double &y,double &pi2,double r,double t) // (x,y) = square(r,t) t=<0,1>
{
pi2=8.0; // circumference(r=1)
// kernel
const int n=4; // sides
const double x0[n]={+1.0,+1.0,-1.0,-1.0}; // side start point
const double y0[n]={-1.0,+1.0,+1.0,-1.0};
const double dx[n]={ 0.0,-2.0, 0.0,+2.0}; // side tangent
const double dy[n]={+2.0, 0.0,-2.0, 0.0};
int ix;
t-=floor(t); // t = <0, 1.0)
t*=n; // t = <0,n)
ix=floor(t); // side of square
t-=ix; // distance from side start
x=r*(x0[ix]+t*dx[ix]);
y=r*(y0[ix]+t*dy[ix]);
}
//---------------------------------------------------------------------------
void getpnt_hexagon(double &x,double &y,double &pi2,double r,double t) // (x,y) = square(r,t) t=<0,1>
{
pi2=6.0; // circumference(r=1)
// kernel
const int n=6; // sides
const double c60=cos(60.0*M_PI/180.0);
const double s60=sin(60.0*M_PI/180.0);
const double x0[n]={+1.0,+c60,-c60,-1.0,-c60,+c60}; // side start point
const double y0[n]={ 0.0,+s60,+s60, 0.0,-s60,-s60};
const double dx[n]={-c60,-1.0,-c60,+c60,+1.0,+c60}; // side tangent
const double dy[n]={+s60, 0.0,-s60,-s60, 0.0,+s60};
int ix;
t-=floor(t); // t = <0, 1.0)
t*=n; // t = <0,n)
ix=floor(t); // side of square
t-=ix; // distance from side start
x=r*(x0[ix]+t*dx[ix]);
y=r*(y0[ix]+t*dy[ix]);
}
//---------------------------------------------------------------------------
void TMain::draw()
{
if (!_redraw) return;
// clear buffer
bmp->Canvas->Brush->Color=clBlack;
bmp->Canvas->FillRect(TRect(0,0,xs,ys));
int e;
double r,t,x,y,c,dr=15.0,dl=15.0;
int xx,yy,rr=3;
bmp->Canvas->MoveTo(xs2,ys2);
bmp->Canvas->Pen->Color=clAqua;
bmp->Canvas->Brush->Color=clBlue;
for (r=dr,t=0.0;;)
{
// get point from selected kernel
// getpnt_circle (x,y,c,r,t);
// getpnt_square (x,y,c,r,t);
getpnt_hexagon(x,y,c,r,t);
// render it
xx=xs2+x;
yy=ys2+y;
bmp->Canvas->LineTo(xx,yy);
bmp->Canvas->Ellipse(xx-rr,yy-rr,xx+rr,yy+rr);
// update position
r+=dr*dr/(r*c);
t+=dl/(r*c); t-=floor(t);
if (r>=xs2) break;
if (r>=ys2) break;
}
// render backbuffer
Main->Canvas->Draw(0,0,bmp);
_redraw=false;
}
//---------------------------------------------------------------------------
You can ignore the VCL/GDI rendering stuff.
xs,ys is full and xs2,ys2 is half resolution of window to scale the plot properly...
dl is distance between markers [pixels]
dr is distance between spiral screws [pixels]
the spiral is sampled with r,t step depending on the actual circumference (that is what the pi2 or c is for). The getpnt_xxxxx function will return x,y coordinate of your shape from parameter t=<0,1> and actual radius r. It also returns the actual value of circumference/r ratio called pi2
Here preview of the 3 kernels used for spiral ...
i tried to port this python implementation of a continuous RBM to Matlab:
http://imonad.com/rbm/restricted-boltzmann-machine/
I generated 2-dimensional trainingdata in the shape of a (noisy) circle and trained the rbm with 2 visible an 8 hidden layers. To test the implementation i fed uniformly distributed randomdata to the RBM and plotted the reconstructed data (Same procedure as used in the link above).
Now the confusing part: With trainingdata in the range of (0,1)x(0,1) i get very satisfying results, however with trainingdata in range (-0.5,-0.5)x(-0.5,-0.5) or (-1,0)x(-1,0) the RBM reconstructs only data in the very right top of the circle. I dont understand what causes this, is it just a bug in my implementation i dont see?
Some plots, the blue dots are the training data, the red dots are the reconstructions.
Here is my implementation of the RBM:
Training:
maxepoch = 300;
ksteps = 10;
sigma = 0.2; % cd standard deviation
learnW = 0.5; % learning rate W
learnA = 0.5; % learning rate A
nVis = 2; % number of visible units
nHid = 8; % number of hidden units
nDat = size(dat, 1);% number of training data points
cost = 0.00001; % cost
moment = 0.9; % momentum
W = randn(nVis+1, nHid+1) / 10; % weights
dW = randn(nVis+1, nHid+1) / 1000; % change of weights
sVis = zeros(1, nVis+1); % state of visible neurons
sVis(1, end) = 1.0; % bias
sVis0 = zeros(1, nVis+1); % initial state of visible neurons
sVis0(1, end) = 1.0; % bias
sHid = zeros(1, nHid+1); % state of hidden neurons
sHid(1, end) = 1.0; % bias
aVis = 0.1*ones(1, nVis+1);% A visible
aHid = ones(1, nHid+1); % A hidden
err = zeros(1, maxepoch);
e = zeros(1, maxepoch);
for epoch = 1:maxepoch
wPos = zeros(nVis+1, nHid+1);
wNeg = zeros(nVis+1, nHid+1);
aPos = zeros(1, nHid+1);
aNeg = zeros(1, nHid+1);
for point = 1:nDat
sVis(1:nVis) = dat(point, :);
sVis0(1:nVis) = sVis(1:nVis); % initial sVis
% positive phase
activHid;
wPos = wPos + sVis' * sHid;
aPos = aPos + sHid .* sHid;
% negative phase
activVis;
activHid;
for k = 1:ksteps
activVis;
activHid;
end
tmp = sVis' * sHid;
wNeg = wNeg + tmp;
aNeg = aNeg + sHid .* sHid;
delta = sVis0(1:nVis) - sVis(1:nVis);
err(epoch) = err(epoch) + sum(delta .* delta);
e(epoch) = e(epoch) - sum(sum(W' * tmp));
end
dW = dW*moment + learnW * ((wPos - wNeg) / numel(dat)) - cost * W;
W = W + dW;
aHid = aHid + learnA * (aPos - aNeg) / (numel(dat) * (aHid .* aHid));
% error
err(epoch) = err(epoch) / (nVis * numel(dat));
e(epoch) = e(epoch) / numel(dat);
disp(['epoch: ' num2str(epoch) ' err: ' num2str(err(epoch)) ...
' ksteps: ' num2str(ksteps)]);
end
save(['rbm_' filename '.mat'], 'W', 'err', 'aVis', 'aHid');
activHid.m:
sHid = (sVis * W) + randn(1, nHid+1);
sHid = sigFun(aHid .* sHid, datRange);
sHid(end) = 1.; % bias
activVis.m:
sVis = (W * sHid')' + randn(1, nVis+1);
sVis = sigFun(aVis .* sVis, datRange);
sVis(end) = 1.; % bias
sigFun.m:
function [sig] = sigFun(X, datRange)
a = ones(size(X)) * datRange(1);
b = ones(size(X)) * (datRange(2) - datRange(1));
c = ones(size(X)) + exp(-X);
sig = a + (b ./ c);
end
Reconstruction:
nSamples = 2000;
ksteps = 10;
nVis = 2;
nHid = 8;
sVis = zeros(1, nVis+1); % state of visible neurons
sVis(1, end) = 1.0; % bias
sHid = zeros(1, nHid+1); % state of hidden neurons
sHid(1, end) = 1.0; % bias
input = rand(nSamples, 2);
output = zeros(nSamples, 2);
for sample = 1:nSamples
sVis(1:nVis) = input(sample, :);
for k = 1:ksteps
activHid;
activVis;
end
output(sample, :) = sVis(1:nVis);
end
RBM's were originally designed to work only with binary data. But also work with data between 0 and 1. Its part of the algorithm. Further reading
As input is in the range of [0 1] for both x and y, this is why they stay in that ares. Changing the input to input = (rand(nSamples, 2)*2) -1; results in input sampled from a range of [-1 1] and therefore the red dots will be more spread out around the circle.