I have a spreadsheet ANA2009_1ag.xlsx with column 1= wavelength lambda and col2=specta1, col3=spectra2, col4=spectra3 etc
I want to fit a curve to each of the spectra using the equation:
ag(lambda) = ag(lambda_o)*exp(-S(lambda-lambda_o)
So I can get the slope S.
I have the code and I am able to run it if I have a text file with 2 columns:
column 1= wavelength lambda and col2=specta1
But as i said above I have several spectra so i would like to make a loop so that the routine i got for fitting the curve and getting the slope loops from one column to the next. ut as a novice in matlab loops are my biggest problem.
My code is as follows.
%//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[num,txt,raw]=xlsread('ANA2009_1ag.xlsx');
%// Get the size of data to be plotted
[r,c]=size(num);
%//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%// using txt vector to make appropriate legend that matches the data plot
Sepctra=cellstr(txt); %//C = cellstr converts array to a cell array.
%//FIND OUT HOW YOU CAN SAY TO END OF COLUMN
for i=2:7
Sepctra(i)=txt(i);
end
%//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%//takeout range of interest
I=find(num(:,1)<650 & num(:,1)>400);
wl=num(I,1);
a_g=num(I,2);
%//setting options for fmisearch
opts = optimset('fminsearch');
opts = optimset(opts,'MaxIter',4000);
opts = optimset(opts,'MaxFunEvals',2000); %// usually 100*number of params
opts = optimset(opts,'TolFun',1e-9);
%//opts = optimset('LevenbergMarquardt','on');
%//guess for paramters (amplitude at 532 and slope)
x0=[0.1, 0.03];
%//minimization routine
x1 = fminsearch(#least_squares,x0,opts,a_g,wl)
%//plot data and fit
plot(wl, a_g, '.k', wl, x1(1)*exp(-x1(2)*(wl-412)),'b')
DATA IS FROM 300 NM (LAMBDA) TO 685 NM (lambda) BUT I CHOSE TO FIT THE CURVE FROM 650-400NM
Wavelength AN10070A-4m AN10066A-10m
300 1.561434 1.434769
300.5 1.549919 1.42786
301 1.531495 1.414042
301.5 1.506162 1.400224
302 1.483132 1.386406
302.5 1.467011 1.372588
303 1.45089 1.356467
303.5 1.443981 1.342649
304 1.42786 1.333437
304.5 1.414042 1.324225
305 1.407133 1.31271
My expected output is:
x1 which is a vector of the amplitude at 412nm and the slope S
I would like to post the figure that i got for the curve fit but I dont know how to do it.
Related
I have trained my Neural network model using MATLAB NN Toolbox. My network has multiple inputs and multiple outputs, 6 and 7 respectively, to be precise. I would like to clarify few questions based on it:-
The final regression plot showed at the end of the training shows a very good accuracy, R~0.99. However, since I have multiple outputs, I am confused as to which scatter plot does it represent? Shouldn't we have 7 target vs predicted plots for each of the output variable?
According to my knowledge, R^2 is a better method of commenting upon the accuracy of the model, whereas MATLAB reports R in its plot. Do I treat that R as R^2 or should I square the reported R value to obtain R^2.
I have generated the Matlab Script containing weight, bias and activation functions, as a final Result of the training. So shouldn't I be able to simply give my raw data as input and obtain the corresponding predicted output. I gave the exact same training set using the indices Matlab chose for training (to cross check), and plotted the predicted output vs actual output, but the result is not at all good. Definitely, not along the lines of R~0.99. Am I doing anything wrong?
code:
function [y1] = myNeuralNetworkFunction_2(x1)
%MYNEURALNETWORKFUNCTION neural network simulation function.
% X = [torque T_exh lambda t_Spark N EGR];
% Y = [O2R CO2R HC NOX CO lambda_out T_exh2];
% Generated by Neural Network Toolbox function genFunction, 17-Dec-2018 07:13:04.
%
% [y1] = myNeuralNetworkFunction(x1) takes these arguments:
% x = Qx6 matrix, input #1
% and returns:
% y = Qx7 matrix, output #1
% where Q is the number of samples.
%#ok<*RPMT0>
% ===== NEURAL NETWORK CONSTANTS =====
% Input 1
x1_step1_xoffset = [-24;235.248;0.75;-20.678;550;0.799];
x1_step1_gain = [0.00353982300884956;0.00284355877067267;6.26959247648903;0.0275865874012055;0.000366568914956012;0.0533831576137729];
x1_step1_ymin = -1;
% Layer 1
b1 = [1.3808996210168685;-2.0990163849711894;0.9651733083552595;0.27000953282929346;-1.6781835509820286;-1.5110463684800366;-3.6257438832309905;2.1569498669085361;1.9204156230460485;-0.17704342477904209];
IW1_1 = [-0.032892214008082517 -0.55848270745152429 -0.0063993424771670616 -0.56161004933654057 2.7161844536020197 0.46415317073346513;-0.21395624254052176 -3.1570133640176681 0.71972178875396853 -1.9132557838515238 1.3365248285282931 -3.022721627052706;-1.1026780445896862 0.2324603066452392 0.14552308208231421 0.79194435276493658 -0.66254679969168417 0.070353201192052434;-0.017994515838487352 -0.097682677816992206 0.68844109281256027 -0.001684535122025588 0.013605622123872989 0.05810686279306107;0.5853667840629273 -2.9560683084876329 0.56713425120259764 -2.1854386350040116 1.2930115031659106 -2.7133159265497957;0.64316656469750333 -0.63667017646313084 0.50060179040086761 -0.86827897068177973 2.695456517458648 0.16822164719859456;-0.44666821007466739 4.0993786464616679 -0.89370838440321498 3.0445073606237933 -3.3015566360833453 -4.492874075961689;1.8337574137485424 2.6946232855369989 1.1140472073136622 1.6167763205944321 1.8573696127039145 -0.81922672766933646;-0.12561950922781362 3.0711045035224349 -0.6535751823440773 2.0590707752473199 -1.3267693770634292 2.8782780742777794;-0.013438026967107483 -0.025741311825949621 0.45460734966889638 0.045052447491038108 -0.21794568374100454 0.10667240367191703];
% Layer 2
b2 = [-0.96846557414356171;-0.2454718918618051;-0.7331628718025488;-1.0225195290982099;0.50307202195645395;-0.49497234988401961;-0.21817117469133171];
LW2_1 = [-0.97716474643411022 -0.23883775971686808 0.99238069915206006 0.4147649511973347 0.48504023209224734 -0.071372217431684551 0.054177719330469304 -0.25963474838320832 0.27368380212104881 0.063159321947246799;-0.15570858147605909 -0.18816739764334323 -0.3793600124951475 2.3851961990944681 0.38355142531334563 -0.75308427071748985 -0.1280128732536128 -1.361052031781103 0.6021878865831336 -0.24725687748503239;0.076251356114485525 -0.10178293627600112 0.10151304376762409 -0.46453434441403058 0.12114876632815359 0.062856969143306296 -0.0019628163322658364 -0.067809039768745916 0.071731544062023825 0.65700427778446913;0.17887084584125315 0.29122649575978238 0.37255802759192702 1.3684190468992126 0.60936238465090853 0.21955911453674043 0.28477957899364675 -0.051456306721251184 0.6519451272106177 -0.64479205028051967;0.25743349663436799 2.0668075180209979 0.59610776847961111 -3.2609682919282603 1.8824214917530881 0.33542869933904396 0.03604272669356564 -0.013842766338427388 3.8534510207741826 2.2266745660915586;-0.16136175574939746 0.10407287099228898 -0.13902245286490234 0.87616472446622717 -0.027079111747601223 0.024812287505204988 -0.030101536834009103 0.043168268669541855 0.12172932035587079 -0.27074383434206573;0.18714562505165402 0.35267726325386606 -0.029241400610813449 0.53053853235049087 0.58880054832728757 0.047959541165126809 0.16152268183097709 0.23419456403348898 0.83166785128608967 -0.66765237856750781];
% Output 1
y1_step1_ymin = -1;
y1_step1_gain = [0.114200879346771;0.145581598485951;0.000139011547272197;0.000456244862967996;2.05816254143146e-05;5.27704485488127;0.00284355877067267];
y1_step1_xoffset = [-0.045;1.122;2.706;17.108;493.726;0.75;235.248];
% ===== SIMULATION ========
% Dimensions
Q = size(x1,1); % samples
% Input 1
x1 = x1';
xp1 = mapminmax_apply(x1,x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);
% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*xp1);
% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;
% Output 1
y1 = mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
y1 = y1';
end
% ===== MODULE FUNCTIONS ========
% Map Minimum and Maximum Input Processing Function
function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin)
y = bsxfun(#minus,x,settings_xoffset);
y = bsxfun(#times,y,settings_gain);
y = bsxfun(#plus,y,settings_ymin);
end
% Sigmoid Symmetric Transfer Function
function a = tansig_apply(n)
a = 2 ./ (1 + exp(-2*n)) - 1;
end
% Map Minimum and Maximum Output Reverse-Processing Function
function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin)
x = bsxfun(#minus,y,settings_ymin);
x = bsxfun(#rdivide,x,settings_gain);
x = bsxfun(#plus,x,settings_xoffset);
end
The above one is the automatically generated code. The plot which I generated to cross-check the first variable is below:-
% X and Y are input and output - same as above
X_train = X(results.info1.train.indices,:);
y_train = Y(results.info1.train.indices,:);
out_train = myNeuralNetworkFunction_2(X_train);
scatter(y_train(:,1),out_train(:,1))
To answer your question about R: Yes, you should square R to get the R^2 value. In this case, they will be very close since R is very close to 1.
The graphs give the correlation between the estimated and real (target) values. So R is the strenght of the correlation. You can square it to find the R-square.
The graph you draw and matlab gave are not the graph of the same variables. The ranges or scales of the axes are very different.
First of all, is the problem you are trying to solve a regression problem? Or is it a classification problem with 7 classes converted to numeric? I assume this is a classification problem, as you are trying to get the success rate for each class.
As for your first question: According to the literature it is recommended to use the value "All: R". If you want to get the success rate of each of your classes, Precision, Recall, F-measure, FP rate, TP Rate, etc., which are valid in classification problems. values you need to reach. There are many matlab documents for this (help ROC) and you can look at the details. All the values I mentioned and which I think you actually want are obtained from the confusion matrix.
There is a good example of this.
[x,t] = simpleclass_dataset;
net = patternnet(10);
net = train(net,x,t);
y = net(x);
[c,cm,ind,per] = confusion(t,y)
I hope you will see what you want from the "nntraintool" window that appears when you run the code.
Your other questions have already been answered. Alternatively, you can consider using a machine learning algorithm with open source software such as Weka.
I am trying to create Training and Testing set out of my ground truth(observation) data which are presented in a tif (raster) format.
Actually, I have a hyperspectral image (Satellite image) which has 200 dimensions(channels/bands) along with the corresponding label(17 class) which are stored in another image. Now, my goal is to implement a classification algorithm and then check the accuracy with the testing dataset.
My problem is, that I do not know how can I describe to my algorithm that which pixel belongs to which class and then split them to taring and testing set.
I have provided a face idea of my goal which is as follows:
But I do not want to do this since I have 145 * 145 pixels dim, so it's not easy to define the location of these pixels and manually assign to their corresponding class.
note that the following example is for 3D image and I have 200D image and I have the labels (ground truth) so I do not need to specify them like the following code but I do want to assign them to their pixels member.
% Assigning pixel(by their location)to different groups.
tpix=[1309,640 ,1;... % Group 1
1218,755 ,1;...
1351,1409,2;... % Group 2
673 ,394 ,2;...
285 ,1762,3;... % Group 3
177 ,1542,3;...
538 ,1754,4;... % Group 4
432 ,1811,4;...
1417,2010,5;... % Group 5
163 ,1733,5;...
652 ,677 ,6;... % Group 6
864 ,1032,6];
row=tpix(:,1); % y-value
col=tpix(:,2); % x-value
group=tpix(:,3); % group number
ngroup=max(group);
% create trainingset
train=[];
for i=1:length(group)
train=[train; r(row(i),col(i)), g(row(i),col(i)), b(row(i),col(i))];
end %for
Do I understand this right? At the seconlast line the train variable gets the values it has until now + the pixels in red, green and blue? Like, you want them to be displayed only in red,green and blue? Only certain ones or all of them? I could imagine that we define an image matrix and then place the values in the images red, green and blue layers. Would that help? I'd make you the code if this is you issue :)
Edit: Solution
%download the .mats from the website and put them in folder of script
load 'Indian_pines_corrected.mat';
load 'Indian_pines_gt.mat';
ipc = indian_pines_corrected;
gt = indian_pines_gt;
%initiating cell
train = cell(16,1);
%loop to search class number of the x and y pixel coordinates
for c = 1:16
for i = 1:145
for j = 1:145
% if the classnumber is equal to the number in the gt pixel,
% then place the pixel from ipc(x,y,:) it in the train{classnumber}(x,y,:)
if gt(i,j) == c
train{c}(i,j,:) = ipc(i,j,:);
end %if
end %for j
end %for i
end %for c
Now you get the train cell that has a matrix in each cell. Each cell is one class and has only the pixels inside that you want. You can check for yourself if the classes correspond to the shape.
Eventually, I could solve my problem. The following code reshapes the matrix(Raster) to vector and then I index the Ground Truth data to find the corresponding pixel's location in Hyperspectral image.
Note that I am looking for an efficient way to construct Training and Testing set.
GT = indian_pines_gt;
data = indian_pines_corrected;
data_vec=reshape(data, 145*145,200);
GT_vec = reshape(GT,145*145,1);
[GT_vec_sort,idx] = sort(GT_vec);
%INDEXING.
index = find(and(GT_vec_sort>0,GT_vec_sort<=16));
classes_num = GT_vec_sort(index);
%length(index)
for k = 1: length(index)
classes(k,:) = data_vec(idx(index(k)),:);
end
figure(1)
plot(GT_vec_sort)
New.
I have done the following for creating Training and Testing set for #Hyperspectral images(Pine dataset). No need to use for loop
clear all
load('Indian_pines_corrected.mat');
load Indian_pines_gt.mat;
GT = indian_pines_gt;
data = indian_pines_corrected;
%Convert image from raster to vector.
data_vec = reshape(data, 145*145, 200);
%Provide location of the desired classes.
GT_loc = find(and(GT>0,GT<=16));
GT_class = GT(GT_loc)
data_value = data_vec(GT_loc,:)
% explanatories plus Respond variable.
%[200(variable/channel)+1(labels)= 201])
dat = [data_value, GT_class];
% create random Test and Training set.
[m,n] = size(dat);
P = 0.70 ;
idx = randperm(m);
Train = dat(idx(1:round(P*m)),:);
Test = dat(idx(round(P*m)+1:end),:);
X_train = Train(:,1:200); y_train = Train(:, 201);
X_test = Test(:,1:200); y_test = Test(:, 201);
Im trying to write a code in Matlab to calculate an area of influence type question. This is an exert from my data (Weighting, x-coord, y-coord):
M =
15072.00 486.00 -292
13269.00 486.00 -292
12843.00 414.00 -267
10969.00 496.00 -287
9907.00 411.00 -274
9718.00 440.00 -265
9233.00 446.00 -253
9138.00 462.00 -275
8830.00 496.00 -257
8632.00 432.00 -253
R =
-13891.00 452.00 -398
-13471.00 461.00 -356
-12035.00 492.00 -329
-11309.00 413.00 -353
-11079.00 467.00 -375
-10659.00 493.00 -333
-10643.00 495.00 -338
-10121.00 455.00 -346
-9795.00 456.00 -367
-8927.00 485.00 -361
-8765.00 467.00 -351
I want to make a function to calculate the sum of the weightings at any given position based on a circle of influence of 30 for each coordinate.
I have thought of using a for loop to calculate each point independently and summing the result but seems unnecessarily complicated and inefficient.
I also thought of assigning an intensity of color to each circle and overlaying them but I dont know how to change color intensity based on value here is my attempt so far (I would like to have a visual of the result):
function [] = Influence()
M = xlsread('MR.xlsx','A4:C310');
R = xlsread('MR.xlsx','E4:G368');
%these are my values around 300 coordinates
%M are negative values and R positive, I want to see which are dominant in their regions
hold on
scatter(M(:,2),M(:,3),3000,'b','filled')
scatter(R(:,2),R(:,3),3000,'y','filled')
axis([350 650 -450 -200])
hold off
end
%had to use a scalar of 3000 for some reason as it isnt correlated to the graph size
I'd appreciate any ideas/solutions thank you
This is the same but with ca. 2000 data points
How about this:
r_influence = 30; % radius of influence
r = #(p,A) sqrt((p(1)-A(:,2)).^2 + (p(2)-A(:,3)).^2); % distance
wsum = #(p,A) sum(A(find(r(p,A)<=r_influence),1)); % sum where distance less than roi
% compute sum on a grid
xrange = linspace(350,550,201);
yrange = linspace(-200,-450,201);
[XY,YX] = meshgrid(xrange,yrange);
map_M = arrayfun(#(p1,p2) wsum([p1,p2],M),XY,YX);
map_R = arrayfun(#(p1,p2) wsum([p1,p2],R),XY,YX);
figure(1);
clf;
imagesc(xrange,yrange,map_M + map_R);
colorbar;
Gives a picture like this:
Is that what you are looking for?
So I am working on my Thesis and I need to calculate geometric characteristics of an airfoil.
To do this, I need to interpolate the horizontal and vertical coordinates of an airfoil. This is used for a tool which will calculate the geometric characteristics automatically which come from random airfoil geometry files.
Sometime the Y values of the airfoil are non monotonic. Hence, the interp1 command gives an error since some values in the Y vector are repeated.
Therefore, my question is: How do I recognize and subsequently interpolate non monotonic increasing data automatically in Matlab.
Here is a sample data set:
0.999974 0.002176
0.994846 0.002555
0.984945 0.003283
0.973279 0.004131
0.960914 0.005022
0.948350 0.005919
0.935739 0.006810
0.923111 0.007691
0.910478 0.008564
0.897850 0.009428
0.885229 0.010282
0.872617 0.011125
0.860009 0.011960
0.847406 0.012783
0.834807 0.013598
0.822210 0.014402
0.809614 0.015199
0.797021 0.015985
0.784426 0.016764
0.771830 0.017536
0.759236 0.018297
0.746639 0.019053
0.734038 0.019797
0.721440 0.020531
0.708839 0.021256
0.696240 0.021971
0.683641 0.022674
0.671048 0.023367
0.658455 0.024048
0.645865 0.024721
0.633280 0.025378
0.620699 0.026029
0.608123 0.026670
0.595552 0.027299
0.582988 0.027919
0.570436 0.028523
0.557889 0.029115
0.545349 0.029697
0.532818 0.030265
0.520296 0.030820
0.507781 0.031365
0.495276 0.031894
0.482780 0.032414
0.470292 0.032920
0.457812 0.033415
0.445340 0.033898
0.432874 0.034369
0.420416 0.034829
0.407964 0.035275
0.395519 0.035708
0.383083 0.036126
0.370651 0.036530
0.358228 0.036916
0.345814 0.037284
0.333403 0.037629
0.320995 0.037950
0.308592 0.038244
0.296191 0.038506
0.283793 0.038733
0.271398 0.038920
0.259004 0.039061
0.246612 0.039153
0.234221 0.039188
0.221833 0.039162
0.209446 0.039064
0.197067 0.038889
0.184693 0.038628
0.172330 0.038271
0.159986 0.037809
0.147685 0.037231
0.135454 0.036526
0.123360 0.035684
0.111394 0.034690
0.099596 0.033528
0.088011 0.032181
0.076685 0.030635
0.065663 0.028864
0.055015 0.026849
0.044865 0.024579
0.035426 0.022076
0.027030 0.019427
0.019970 0.016771
0.014377 0.014268
0.010159 0.012029
0.007009 0.010051
0.004650 0.008292
0.002879 0.006696
0.001578 0.005207
0.000698 0.003785
0.000198 0.002434
0.000000 0.001190
0.000000 0.000000
0.000258 -0.001992
0.000832 -0.003348
0.001858 -0.004711
0.003426 -0.005982
0.005568 -0.007173
0.008409 -0.008303
0.012185 -0.009379
0.017243 -0.010404
0.023929 -0.011326
0.032338 -0.012056
0.042155 -0.012532
0.052898 -0.012742
0.064198 -0.012720
0.075846 -0.012533
0.087736 -0.012223
0.099803 -0.011837
0.111997 -0.011398
0.124285 -0.010925
0.136634 -0.010429
0.149040 -0.009918
0.161493 -0.009400
0.173985 -0.008878
0.186517 -0.008359
0.199087 -0.007845
0.211686 -0.007340
0.224315 -0.006846
0.236968 -0.006364
0.249641 -0.005898
0.262329 -0.005451
0.275030 -0.005022
0.287738 -0.004615
0.300450 -0.004231
0.313158 -0.003870
0.325864 -0.003534
0.338565 -0.003224
0.351261 -0.002939
0.363955 -0.002680
0.376646 -0.002447
0.389333 -0.002239
0.402018 -0.002057
0.414702 -0.001899
0.427381 -0.001766
0.440057 -0.001656
0.452730 -0.001566
0.465409 -0.001496
0.478092 -0.001443
0.490780 -0.001407
0.503470 -0.001381
0.516157 -0.001369
0.528844 -0.001364
0.541527 -0.001368
0.554213 -0.001376
0.566894 -0.001386
0.579575 -0.001398
0.592254 -0.001410
0.604934 -0.001424
0.617614 -0.001434
0.630291 -0.001437
0.642967 -0.001443
0.655644 -0.001442
0.668323 -0.001439
0.681003 -0.001437
0.693683 -0.001440
0.706365 -0.001442
0.719048 -0.001444
0.731731 -0.001446
0.744416 -0.001443
0.757102 -0.001445
0.769790 -0.001444
0.782480 -0.001445
0.795173 -0.001446
0.807870 -0.001446
0.820569 -0.001446
0.833273 -0.001446
0.845984 -0.001448
0.858698 -0.001448
0.871422 -0.001451
0.884148 -0.001448
0.896868 -0.001446
0.909585 -0.001443
0.922302 -0.001445
0.935019 -0.001446
0.947730 -0.001446
0.960405 -0.001439
0.972917 -0.001437
0.984788 -0.001441
0.994843 -0.001441
1.000019 -0.001441
First column is X and the second column is Y. Notice how the last values of Y are repeated.
Maybe someone can provide me with a piece of code to do this? Or any suggestions are welcome as well.
Remember I need to automate this process.
Thanks for your time and effort I really appreciate it!
There is quick and dirty method if you do not know the exact function defining the foil profile. Split your data into 2 sets, top and bottom planes, so the 'x' data are monotonic increasing.
First I imported your data table in the variable A, then:
%// just reorganise your input in individual vectors. (this is optional but
%// if you do not do it you'll have to adjust the code below)
x = A(:,1) ;
y = A(:,2) ;
ipos = y > 0 ; %// indices of the top plane
ineg = y <= 0 ; %// indices of the bottom plane
xi = linspace(0,1,500) ; %// new Xi for interpolation
ypos = interp1( x(ipos) , y(ipos) , xi ) ; %// re-interp the top plane
yneg = interp1( x(ineg) , y(ineg) , xi ) ; %// re-interp the bottom plane
y_new = [fliplr(yneg) ypos] ; %// stiches the two half data set together
x_new = [fliplr(xi) xi] ;
%% // display
figure
plot(x,y,'o')
hold on
plot(x_new,y_new,'.r')
axis equal
As said on top, it is quick and dirty. As you can see from the detail figure, you can greatly improve the x resolution this way in the area where the profile is close to the horizontal direction, but you loose a bit of resolution at the noose of the foil where the profile is close to the vertical direction.
If it's acceptable then you're all set. If you really need the resolution at the nose, you could look at interpolating on x as above but do a very fine x grid near the noose (instead of the regular x grid I provided as example).
if your replace the xi definition above by:
xi = [linspace(0,0.01,50) linspace(0.01,1,500)] ;
You get the following near the nose:
adjust that to your needs.
To interpolate any function, there must be a function defined. When you define y=f(x), you cannot have the same x for two different values of y because then we are not talking about a function. In your example data, neither x nor y are monotonic, so anyway you slice it, you'll have two (or more) "y"s for the same "x". If you wish to interpolate, you need to divide this into two separate problems, top/bottom and define proper functions for interp1/2/n to work with, for example, slice it horizontally where x==0. In any case, you would have to provide additional info than just x or y alone, e.g.: x=0.5 and y is on top.
On the other hand, if all you want to do is to insert a few values between each x and y in your array, you can do this using finite differences:
%// transform your original xy into 3d array where x is in first slice and y in second
xy = permute(xy(85:95,:), [3,1,2]); %// 85:95 is near x=0 in your data
%// lets say you want to insert three additional points along each line between every two points on given airfoil
h = [0, 0.25, 0.5, 0.75].'; %// steps along each line - column vector
%// every interpolated h along the way between f(x(n)) and f(x(n+1)) can
%// be defined as: f(x(n) + h) = f(x(n)) + h*( f(x(n+1)) - f(x(n)) )
%// this is first order finite differences approximation in 1D. 2D is very
%// similar only with gradient (this should be common knowledge, look it up)
%// from here it's just fancy matrix play
%// 2D gradient of xy curve
gradxy = diff(xy, 1, 2); %// diff xy, first order, along the 2nd dimension, where x and y now run
h_times_gradxy = bsxfun(#times, h, gradxy); %// gradient times step size
xy_in_3d_array = bsxfun(#plus, xy(:,1:end-1,:), h_times_gradxy); %// addition of "f(x)" and there we have it, the new x and y for every step h
[x,y] = deal(xy_in_3d_array(:,:,1), xy_in_3d_array(:,:,2)); %// extract x and y from 3d matrix
xy_interp = [x(:), y(:)]; %// use Matlab's linear indexing to flatten x and y into columns
%// plot to check results
figure; ax = newplot; hold on;
plot(ax, xy(:,:,1), xy(:,:,2),'o-');
plot(ax, xy_interp(:,1), xy_interp(:,2),'+')
legend('Original','Interpolated',0);
axis tight;
grid;
%// The End
And these are the results, near x=0 for clarity of presentation:
Hope that helps.
Cheers.
I am not very sure how the hist function in MATLAB works. I seem to have few problems with it.
Bascially, in the code below, i am trying to run the rotation invariant Uniform Local Binary Pattern(LBP) code. I have no problem with the LBP code but the problem is with hist function(indicated in the code below).
The problem is that the range i should get is from 0:9 but when i apply the histogram function i get values greater than 9 such as 35, 27 and even values such as 178114.Not very sure how to correct it.
I2 = imread('test.png');
RIUniformHist=[];
m=size(I2,1);
n=size(I2,2);
for i=1:10:m
for j=1:10:n
for k=i+1:i+8
for l=j+1:j+8
J0=I2(k,l);
I3(k-1,l-1)=I2(k-1,l-1)>J0;
I3(k-1,l)=I2(k-1,l)>J0;
I3(k-1,l+1)=I2(k-1,l+1)>J0;
I3(k,l+1)=I2(k,l+1)>J0;
I3(k+1,l+1)=I2(k+1,l+1)>J0;
I3(k+1,l)=I2(k+1,l)>J0;
I3(k+1,l-1)=I2(k+1,l-1)>J0;
I3(k,l-1)=I2(k,l-1)>J0;
LBP=I3(k-1,l-1)*2^7+I3(k-1,l)*2^6+I3(k-1,l+1)*2^5+I3(k,l+1)*2^4+I3(k+1,l+1)*2^3+I3(k+1,l)*2^2+I3(k+1,l-1)*2^1+I3(k,l-1)*2^0;
bits = bitand(LBP, 2.^(7:-1:0))>0;
if nnz(diff(bits([1:end, 1]))) <= 2
RIULBP(k,l)=abs(I3(k-1,l-1)-I3(k-1,l))+ abs(I3(k-1,l)-I3(k-1,l+1))+ abs(I3(k-1,l+1)-I3(k,l+1))+ abs(I3(k,l+1)-I3(k+1,l+1))+abs(I3(k+1,l+1)-I3(k+1,l))+abs(I3(k+1,l)-I3(k+1,l-1))+abs(I3(k+1,l-1)-I3(k,l-1));
else
RIULBP(k,l)=9;
end
end
end
RIULBP=uint8(RIULBP);
RIULBPv=reshape(RIULBP,1,size(RIULBP,1)*size(RIULBP,2));
RIUHist=hist(RIULBPv,0:9); % problem
RIUniformHist = [RIUniformHist RIUHist];
end
end
The vector returned by
RIUHist=hist(data, bins)
is the count of how many elements of data are nearest the point identified by the bins vector. So if you have a value of 178114, that juts means that there were 178114 elements of data that were nearest to the matching index in bins.
You can use
[RIUHist, binsOut] = hist(data)
to let Matlab choose the bins (I believe it uses 20 bins) or
[RIUHist, binsOut] = hist(data, binCount)
To let Matlab choose the bins, but force a certain number of bins (I often use 100 or 200).