Is there an inverse factorial expression I can use in Matlab? - matlab

I want to edit this to get numberOfCircuits on its own on the left. Is there a possible way to do this in MATLAB?
e1=power(offeredTraffic,numberOfCircuits)/factorial(numberOfCircuits)/sum
The math for this problem is given in https://math.stackexchange.com/questions/61755/is-there-a-way-to-solve-for-an-unknown-in-a-factorial, but it's unclear how to do this with Matlab's functionality.

I'm guessing the easy part is rearranging:
fact_to_invert = power(offeredTraffic,numberOfCircuits)/sum/e1;
Inverting can be done, for instance, by using fzero. First define a continuous factorial based on the gamma function:
fact = #(n) gamma(n+1);
Then use fzero to invert it numerically:
numberOfCircuits_from_inverse = fzero(#(x) fact(x)-fact_to_invert,1);
Of course you should round the result for safe measure, and if it's not an integer then something's wrong.
Note: it's very bad practice (and brings 7 years bad luck) to name a variable with a name which is also a built-in, such as sum in your example.

Related

Convert symbolic expression into a rational polynomial

I have a lengthy symbolic expression that involves rational polynomials (basic arithmetic and integer powers). I'd like to simplify it into a single (simple) rational polynomial.
numden does it, but it seems to use some expensive optimization, which probably addresses a more general case. When tried on my example below, it crashed after a few hours--out of memory (32GB).
I believe something more efficient is possible even if I don't have a cpp access to matlab functionality (e.g. children).
Motivation: I have an objective function that involves polynomials. I manually derived it, and I'd like to verify and compare the derivatives: I subtract the two expressions, and the result should vanish.
Currently, my interest in this is academic since practically, I simply substitute some random expression, get zero, and it's enough for me.
I'll try to find the time to play with this as some point, and I'll update here about it, but I posted in case someone finds it interesting and would like to give it a try before that.
To run my function:
x = sym('x', [1 32], 'real')
e = func(x)
The function (and believe it or not, this is just the Jacobian, and I also have the Hessian) can't be pasted here since the text limit is 30K:
https://drive.google.com/open?id=1imOAa4VS87WDkOwAK0NoFCJPTK_2QIRj

vectorizing "for" loop with bidirectionally related variables

Last week I asked the following:
https://stackoverflow.com/questions/32658199/vectorizing-gibbs-sampler-in-matlab
Perhaps it was not that clear what I want to do, so this might be more clear.
I would like to vectorize a "for" loop in matlab, where some variables inside of the loop are bidirectionally related. So, here is an example:
A=2;
B=3;
for i=1:10000
A=3*B;
B=exp(A*(-1/2))
end
Thank you once again for your time.
A quick Excel calculation indicates that this quickly converges to 0.483908 (after much less than 10000 loops - so one way of speeding it up would be to check for convergence). If A and B are always 2 and 3 respectively, you could just replace the loop with this value.
Alternatively, using some series analysis you might be able to come up with an analytical expression for B when i is large - although with the nested exponents deriving this is a bit beyond my own abilities!
Edit
A bit of googling reveals this. Wikipedia states that for a tetration of x to infinity (i.e. x^x^x^x^x...), the solution y satisfies y = x^y. In your case, for example, 0.483908 = e^(-3/2)^0.483908, so 0.483908 is a solution. Not sure how you would exploit this though.
Wikipedia also gives a convergence condition, which might be of use to you: x lies between e^-e and e^1/e.
Final Edit (?)
Turns out you need Lambert's W function to solve for equations of the form of y = x^y. There seems to be no native function for this, but there seems to be something in the FileExchange - see here and here.

MATLAB: using a minimum function within symsum

I am trying to run code similar to the following, I replaced the function I had with one much smaller, to provide a minimum working example:
clear
syms k m
n=2;
symsum(symsum(k*m,m,0,min(k,n-k)),k,0,n)
I receive the following error message:
"Error using sym/min (line 86)
Input arguments must be convertible to floating-point numbers."
I think this means that the min function cannot be used with symbolic arguments. However, I was hoping that MATLAB would be substituting in actual numbers through its iterations of k=0:n.
Is there a way to get this to work? Any help much appreciated. So far I the most relevant page I found was here, but I am somewhat hesitant as I find it difficult to understand what this function does.
EDIT following #horchler, I messed around putting it in various places to try and make it work, and this one did:
clear
syms k m
n=2;
symsum(symsum(k*m,m,0,feval(symengine, 'min', k,n-k)),k,0,n)
Because I do not really understand this feval function, I was curious to whether there was a better, perhaps more commonly-used solution. Although it is a different function, there are many pieces online advising against the eval function, for example. I thought perhaps this one may also carry issues.
I agree that Matlab should be able to solve this as you expect, even though the documentation is clear that it won't.
Why the issue occurs
The problem is due the inner symbolic summation, and the min function itself, being evaluated first:
symsum(k*m,m,0,min(k,n-k))
In this case, the input arguments to sym/min are not "convertible to floating-point numbers" as k is a symbolic variable. It is only after you wrap the above in another symbolic summation that k becomes clearly defined and could conceivably be reduced to numbers, but the inner expression has already generated an error so it's too late.
I think that it's a poor choice for sym/min to return an error. Rather, it should just return itself. This is what the sym/int function does when it can't evaluate an integral symbolically or numerically. MuPAD (see below) and Mathematica 10 also do something like this as well for their min functions.
About the workaround
This directly calls a MuPAD's min function. Calling MuPAD functions from Matlab is discussed in more detail in this article from The MathWorks.
If you like, you can wrap it in a function or an anonymous function to make calling it cleaner, e.g.:
symmin = #(x,y)feval(symengine,'min',x,y);
Then, you code would simply be:
syms k m
n = 2;
symsum(symsum(k*m,m,0,symmin(k,n-k)),k,0,n)
If you look at the code for sym/min in the Symbolic Math toolbox (type edit sym/min in your Command Window), you'll see that it's based on a different function: symobj::maxmin. I don't know why it doesn't just call MuPAD's min, other than performance reasons perhaps. You might consider filing a service request with The MathWorks to ask about this issue.

evaluate numeric part of a "sym" variable

I need to evaluate numeric part of a "sym" variable in MATLAB(something like "evalf" function in maple) for instance I have this sym variable :
(12*(51*EE*II - 8*39^(1/2)*EE*II))/(AA*ll^4*ro)
"evalf" in maple gives me 12.48019224*EE*II/(AA*ll^4*ro), is there any way to do this in MATLAB?
I think that you're looking for the vpa (variable precision arithmetic) function
syms EE II AA ll ro
y = (12*(51*EE*II - 8*39^(1/2)*EE*II))/(AA*ll^4*ro)
vpa(y)
which returns
ans =
(12.48019215375377223869826038978*EE*II)/(AA*ll^4*ro)
MATLAB has a simplify command, but keep in mind that the symbolic toolbox does not like to evaluate to give decimal, it will try to keep everything in fractional values, since that is more accurate anyway.
syms('EE','AA','ll','II','ro')
simplify((12*(51*EE*II - 8*39^(1/2)*EE*II))/(AA*ll^4*ro)))
This will reduce down into the following
-(12*EE*II*(8*39^(1/2) - 51))/(AA*ll^4*ro)
Whether this is more to your liking is really up to you, but I would suggest keeping things in fractions as opposed to decimal. More accuracy is better.
The eval function might also be of some use to you, but that too will keep it fractional. Using that will give you
(13722116389931*EE*II)/(1099511627776*AA*ll^4*ro)

Turn off "smart behavior" in Matlab

There is one thing I do not like on Matlab: It tries sometimes to be too smart. For instance, if I have a negative square root like
a = -1; sqrt(a)
Matlab does not throw an error but switches silently to complex numbers. The same happens for negative logarithms. This can lead to hard to find errors in a more complicated algorithm.
A similar problem is that Matlab "solves" silently non quadratic linear systems like in the following example:
A=eye(3,2); b=ones(3,1); x = A \ b
Obviously x does not satisfy A*x==b (It solves a least square problem instead).
Is there any possibility to turn that "features" off, or at least let Matlab print a warning message in this cases? That would really helps a lot in many situations.
I don't think there is anything like "being smart" in your examples. The square root of a negative number is complex. Similarly, the left-division operator is defined in Matlab as calculating the pseudoinverse for non-square inputs.
If you have an application that should not return complex numbers (beware of floating point errors!), then you can use isreal to test for that. If you do not want the left division operator to calculate the pseudoinverse, test for whether A is square.
Alternatively, if for some reason you are really unable to do input validation, you can overload both sqrt and \ to only work on positive numbers, and to not calculate the pseudoinverse.
You need to understand all of the implications of what you're writing and make sure that you use the right functions if you're going to guarantee good code. For example:
For the first case, use realsqrt instead
For the second case, use inv(A) * b instead
Or alternatively, include the appropriate checks before/after you call the built-in functions. If you need to do this every time, then you can always write your own functions.