In the last few days, I'm having this weird issue with my Serverless Postgres RDS.
After deploying new code to the backend service the RDS server becomes unavailable, the only logs I could find are those :
Freeable Memory (MB):
The only document I found is this one, which said AWS working on fixing this issue.
Any help will be much appreciated.
As per the AWS Blog on RDS serverless best practices:
Aurora Serverless scales up when capacity constraints are seen in CPU or connections. However, finding a scaling point can take time (see the Scale-blocking operations section). If there is a sudden spike in requests, you can overwhelm the database. Aurora Serverless might not be able to find a scaling point and scale quickly enough due to a shortage of resources.
The error - Error restarting database: Unable to find shared memory value in the postgres.log file from pg_ctl getSharedMemory command ideally would replace to memory allocation issue.
The best way to handle it would be to keep a buffer/minimum higher allocation of memory while expecting a load on the server.
I am using Multi AZ RDS Postgresql db.m4.2xlarge instance. For a couple of days my instance is experiencing 100% CPU utilization. I have enabled performance insight and it is showing normal AAS for my queries along with the others connections, which are not connected with any SQL or HOST so can't be traced. Screen shot is below:
We are running load test against an application that hits a Postgres database.
During the test, we suddenly get an increase in error rate.
After analysing the platform and application behaviour, we notice that:
CPU of Postgres RDS is 100%
Freeable memory drops on this same server
And in the postgres logs, we see:
2018-08-21 08:19:48 UTC::#:[XXXXX]:LOG: server process (PID XXXX) was terminated by signal 9: Killed
After investigating and reading documentation, it appears one possibility is linux oomkiller running having killed the process.
But since we're on RDS, we cannot access system logs /var/log messages to confirm.
So can somebody:
confirm that oom killer really runs on AWS RDS for Postgres
give us a way to check this ?
give us a way to compute max memory used by Postgres based on number of connections ?
I didn't find the answer here:
http://postgresql.freeideas.cz/server-process-was-terminated-by-signal-9-killed/
https://www.postgresql.org/message-id/CAOR%3Dd%3D25iOzXpZFY%3DSjL%3DWD0noBL2Fio9LwpvO2%3DSTnjTW%3DMqQ%40mail.gmail.com
https://www.postgresql.org/message-id/04e301d1fee9%24537ab200%24fa701600%24%40JetBrains.com
AWS maintains a page with best practices for their RDS service: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html
In terms of memory allocation, that's the recommendation:
An Amazon RDS performance best practice is to allocate enough RAM so
that your working set resides almost completely in memory. To tell if
your working set is almost all in memory, check the ReadIOPS metric
(using Amazon CloudWatch) while the DB instance is under load. The
value of ReadIOPS should be small and stable. If scaling up the DB
instance class—to a class with more RAM—results in a dramatic drop in
ReadIOPS, your working set was not almost completely in memory.
Continue to scale up until ReadIOPS no longer drops dramatically after
a scaling operation, or ReadIOPS is reduced to a very small amount.
For information on monitoring a DB instance's metrics, see Viewing DB Instance Metrics.
Also, that's their recommendation to troubleshoot possible OS issues:
Amazon RDS provides metrics in real time for the operating system (OS)
that your DB instance runs on. You can view the metrics for your DB
instance using the console, or consume the Enhanced Monitoring JSON
output from Amazon CloudWatch Logs in a monitoring system of your
choice. For more information about Enhanced Monitoring, see Enhanced
Monitoring
There's a lot of good recommendations there, including query tuning.
Note that, as a last resort, you could switch to Aurora, which is compatible with PostgreSQL:
Aurora features a distributed, fault-tolerant, self-healing storage
system that auto-scales up to 64TB per database instance. Aurora
delivers high performance and availability with up to 15 low-latency
read replicas, point-in-time recovery, continuous backup to Amazon S3,
and replication across three Availability Zones.
EDIT: talking specifically about your issue w/ PostgreSQL, check this Stack Exchange thread -- they had a long connection with auto commit set to false.
We had a long connection with auto commit set to false:
connection.setAutoCommit(false)
During that time we were doing a lot
of small queries and a few queries with a cursor:
statement.setFetchSize(SOME_FETCH_SIZE)
In JDBC you create a connection object, and from that connection you
create statements. When you execute the statments you get a result
set.
Now, every one of these objects needs to be closed, but if you close
statement, the entry set is closed, and if you close the connection
all the statements are closed and their result sets.
We were used to short living queries with connections of their own so
we never closed statements assuming the connection will handle the
things once it is closed.
The problem was now with this long transaction (~24 hours) which never
closed the connection. The statements were never closed. Apparently,
the statement object holds resources both on the server that runs the
code and on the PostgreSQL database.
My best guess to what resources are left in the DB is the things
related to the cursor. The statements that used the cursor were never
closed, so the result set they returned never closed as well. This
meant the database didn't free the relevant cursor resources in the
DB, and since it was over a huge table it took a lot of RAM.
Hope it helps!
TLDR: If you need PostgreSQL on AWS and you need rock solid stability, run PostgreSQL on EC2 (for now) and do some kernel tuning for overcommitting
I'll try to be concise, but you're not the only one who has seen this and it is a known (internal to Amazon) issue with RDS and Aurora PostgreSQL.
OOM Killer on RDS/Aurora
The OOM killer does run on RDS and Aurora instances because they are backed by linux VMs and OOM is an integral part of the kernel.
Root Cause
The root cause is that the default Linux kernel configuration assumes that you have virtual memory (swap file or partition), but EC2 instances (and the VMs that back RDS and Aurora) do not have virtual memory by default. There is a single partition and no swap file is defined. When linux thinks it has virtual memory, it uses a strategy called "overcommitting" which means that it allows processes to request and be granted a larger amount of memory than the amount of ram the system actually has. Two tunable parameters govern this behavior:
vm.overcommit_memory - governs whether the kernel allows overcommitting (0=yes=default)
vm.overcommit_ratio - what percent of system+swap the kernel can overcommit. If you have 8GB of ram and 8GB of swap, and your vm.overcommit_ratio = 75, the kernel will grant up to 12GB or memory to processes.
We set up an EC2 instance (where we could tune these parameters) and the following settings completely stopped PostgreSQL backends from getting killed:
vm.overcommit_memory = 2
vm.overcommit_ratio = 75
vm.overcommit_memory = 2 tells linux not to overcommit (work within the constraints of system memory) and vm.overcommit_ratio = 75 tells linux not to grant requests for more than 75% of memory (only allow user processes to get up to 75% of memory).
We have an open case with AWS and they have committed to coming up with a long-term fix (using kernel tuning params or cgroups, etc) but we don't have an ETA yet. If you are having this problem, I encourage you to open a case with AWS and reference case #5881116231 so they are aware that you are impacted by this issue, too.
In short, if you need stability in the near term, use PostgreSQL on EC2. If you must use RDS or Aurora PostgreSQL, you will need to oversize your instance (at additional cost to you) and hope for the best as oversizing doesn't guarantee you won't still have the problem.
We had lately several times the same problems on Google compute engine environment with PostgreSQL streaming replication and I would like to understand reasons and if I can repair it in some smoother way.
From time to time we see some communication problems in Google's internal network in GCE datacenter and they always trigger replication lags between our PG master and its replicas. All machines are Debian-8 and PostgreSQL 9.5.
When situation happens everything seems to be OK - no errors in PG logs on master or replicas just communication between master and replicas seems to be incredibly slow or repeatedly failing so new WAL logs are transfered to replicas with big delays and therefore replication lag is still growing.
Restart of replication from within PostgreSQl or restart of PostgreSQL on replica does not really help - after several WAL logs copied using scp in recovery command communication is back in previous incredibly slow status. Only restart of the whole instance help. When whole VM is restarted communication is back to normal and recovery even from lag many hours long is done in a few minutes. So main reason for this behavior seems to be on OS level. I tried to check net traffic but without finding anything significant. I also do not see anything relevant in any OS log.
Could restart of some OS service help? So I do not need to restart the whole VM? Thank you very much for any ideas.
I have been observing that my PostgreSQL read replica shows periodic delay for replication lags. The lag seems to build to up to 30-40 minutes and then automatically goes down to 0. There is a correlation with CPU Utilization but it's nowhere close to CPU limit.
Read traffic comes from a reporting software called DOMO. DOMO periodically copies a large chunk of data & full tables into its warehouse.
Here's AWS Cloudwatch graph. The red line shows Replication Lag in seconds. The blue line shows the CPU load.
Lag vs CPU
Lag vs Network Out
Lag vs Read IOPS
Lag vs Write IOPS
Cloud: Amazon RDS
Instance Size: db.m3.2xlarge
PostgresSQL version: 9.3
Postgres Settings:
Shared Buffers (Set by RDS) = 7.3 GB (956978 * 8KB)
Updates
Tried setting Shared Buffers to 1GB (didn't help)
Updates June, 5 2017
I created a branch new replica for my database and pointed the reporting software (DOMO) at it. Things in the new instance look stable for now. The old replica which has no read traffic now is stable as well. Beginning to suspect some type of AWS config issue or something to do what remaining artifacts in the database (vacuum?).
RDS read replica lag metric isn't updated when there's nothing to replicate. If master database has no changes to replicate, then replica would only be updated on time-forced so called checkpoint - periodic sync of data from write ahead log to the tables.
This would cause the graph to look like above. To see the real graph data you'd have to generate some traffic on the master, for example update some special sequence every minute or even every second - depending how much resolution you need.
Also WAL-generation log of master and network utilization on replica graphs would be interesting - the alternative explanation would be that there are too much traffic (IO or network) for replica to handle and it can only catch-up when traffic stops.