How to handle AskTimeoutException in play controller - scala

Hi I want to wrap AskTimeOutException and send proper message ....
class Application #Inject()(system: ActorSystem) extends Controller {
def index = Action { Ok("Welcome")}
val ref: ActorSelection = system.actorSelection("akka.tcp://NLPSystem#127.0.0.1:5150/user/nlp")
implicit val timeout = Timeout(5 seconds)
def nlp(query: String) = Action.async {
val fut: Future[NLPResponse] = (ref ? NLPRequest(query)).mapTo[NLPResponse]
fut map {
case e: akka.pattern.AskTimeoutException => InternalServerError("NLP engine is down please try after some time")
case res: NLPResponse => Ok(res.response)
}
}
}
Please suggest me proper way to handle it..

Future errors should be handle using the recover combinator:
fut map {
case res: NLPResponse => Ok(res.response)
} recover {
case _: akka.pattern.AskTimeoutException => InternalServerError("NLP engine is down please try after some time")
case e => InternalServerError("Other error: " + e.getMessage)
}

Related

Scala Future and TimeoutException: how to know the root cause?

Suppose I have the following code:
val futureInt1 = getIntAsync1();
val futureInt2 = getIntAsync2();
val futureSum = for {
int1 <- futureInt1
int2 <- futureInt2
} yield (int1 + int2)
val sum = Await.result(futureSum, 60 seconds)
Now suppose one of getIntAsync1 or getIntAsync2 takes a very long time, and it leads to Await.result throwing exception:
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [60 seconds]
How am I supposed to know which one of getIntAsync1 or getIntAsync2 was still pending and actually lead to the timeout?
Note that here I'm merging 2 futures with zip, and this is a simple example for the question, but in my app I have this kind of code at different level (ie getIntAsync1 itself can use Future.zip or Future.sequence, map/flatMap/applicative)
Somehow what I'd like is to be able to log the pending concurrent operation stacktraces when a timeout occur on my main thread, so that I can know where are the bottlenexts on my system.
I have an existing legacy API backend which is not fully reactive yet and won't be so soon. I'm trying to increase response times by using concurrency. But since using this kind of code, It's become way more painful to understand why something takes a lot of time in my app. I would appreciate any tip you can provide to help me debugging such issues.
The key is realizing is that a the Future doesn't time out in your example—it's your calling thread which pauses for at most X time.
So, if you want to model time in your Futures you should use zipWith on each branch and zip with a Future which will contain a value within a certain amount of time. If you use Akka then you can use akka.pattern.after for this, together with Future.firstCompletedOf.
Now, even if you do, how do you figure out why any of your futures weren't completed in time, perhaps they depended on other futures which didn't complete.
The question boils down to: Are you trying to do some root-cause analysis on throughput? Then you should monitor your ExecutionContext, not your Futures. Futures are only values.
The proposed solution wraps each future from for block into TimelyFuture which requires timeout and name. Internally it uses Await to detect individual timeouts.
Please bear in mind this style of using futures is not intended for production code as it uses blocking. It is for diagnostics only to find out which futures take time to complete.
package xxx
import java.util.concurrent.TimeoutException
import scala.concurrent.{Future, _}
import scala.concurrent.duration.Duration
import scala.util._
import scala.concurrent.duration._
class TimelyFuture[T](f: Future[T], name: String, duration: Duration) extends Future[T] {
override def onComplete[U](ff: (Try[T]) => U)(implicit executor: ExecutionContext): Unit = f.onComplete(x => ff(x))
override def isCompleted: Boolean = f.isCompleted
override def value: Option[Try[T]] = f.value
#scala.throws[InterruptedException](classOf[InterruptedException])
#scala.throws[TimeoutException](classOf[TimeoutException])
override def ready(atMost: Duration)(implicit permit: CanAwait): TimelyFuture.this.type = {
Try(f.ready(atMost)(permit)) match {
case Success(v) => this
case Failure(e) => this
}
}
#scala.throws[Exception](classOf[Exception])
override def result(atMost: Duration)(implicit permit: CanAwait): T = {
f.result(atMost)
}
override def transform[S](ff: (Try[T]) => Try[S])(implicit executor: ExecutionContext): Future[S] = {
val p = Promise[S]()
Try(Await.result(f, duration)) match {
case s#Success(_) => ff(s) match {
case Success(v) => p.success(v)
case Failure(e) => p.failure(e)
}
case Failure(e) => e match {
case e: TimeoutException => p.failure(new RuntimeException(s"future ${name} has timed out after ${duration}"))
case _ => p.failure(e)
}
}
p.future
}
override def transformWith[S](ff: (Try[T]) => Future[S])(implicit executor: ExecutionContext): Future[S] = {
val p = Promise[S]()
Try(Await.result(f, duration)) match {
case s#Success(_) => ff(s).onComplete({
case Success(v) => p.success(v)
case Failure(e) => p.failure(e)
})
case Failure(e) => e match {
case e: TimeoutException => p.failure(new RuntimeException(s"future ${name} has timed out after ${duration}"))
case _ => p.failure(e)
}
}
p.future
}
}
object Main {
import scala.concurrent.ExecutionContext.Implicits.global
def main(args: Array[String]): Unit = {
val f = Future {
Thread.sleep(5);
1
}
val g = Future {
Thread.sleep(2000);
2
}
val result: Future[(Int, Int)] = for {
v1 <- new TimelyFuture(f, "f", 10 milliseconds)
v2 <- new TimelyFuture(g, "g", 10 milliseconds)
} yield (v1, v2)
val sum = Await.result(result, 1 seconds) // as expected, this throws exception : "RuntimeException: future g has timed out after 10 milliseconds"
}
}
If you are merely looking for informational metrics on which individual future was taking a long time (or in combination with others), your best bet is to use a wrapper when creating the futures to log the metrics:
object InstrumentedFuture {
def now() = System.currentTimeMillis()
def apply[T](name: String)(code: => T): Future[T] = {
val start = now()
val f = Future {
code
}
f.onComplete {
case _ => println(s"Future ${name} took ${now() - start} ms")
}
f
}
}
val future1 = InstrumentedFuture("Calculator") { /*...code...*/ }
val future2 = InstrumentedFuture("Differentiator") { /*...code...*/ }
You can check if a future has completed by calling its isComplete method
if (futureInt1.isComplete) { /*futureInt2 must be the culprit */ }
if (futureInt2.isComplete) { /*futureInt1 must be the culprit */ }
As a first approach i would suggest to lift your Future[Int] into Future[Try[Int]]. Something like that:
object impl {
def checkException[T](in: Future[T]): Future[Try[T]] =
in.map(Success(_)).recover {
case e: Throwable => {
Failure(new Exception("Error in future: " + in))
}
}
implicit class FutureCheck(s: Future[Int]) {
def check = checkException(s)
}
}
Then a small function to combine the results, something like that:
object test {
import impl._
val futureInt1 = Future{ 1 }
val futureInt2 = Future{ 2 }
def combine(a: Try[Int], b: Try[Int])(f: (Int, Int) => (Int)) : Try[Int] = {
if(a.isSuccess && b.isSuccess) {
Success(f(a.get, b.get))
}
else
Failure(new Exception("Error adding results"))
}
val futureSum = for {
int1 <- futureInt1.check
int2 <- futureInt2.check
} yield combine(int1, int2)(_ + _)
}
In futureSum you will have a Try[Int] with the integer or a Failure with the exception corresponding with the possible error.
Maybe this can be useful
val futureInt1 = getIntAsync1();
val futureInt2 = getIntAsync2();
val futureSum = for {
int1 <- futureInt1
int2 <- futureInt2
} yield (int1 + int2)
Try(Await.result(futureSum, 60 seconds)) match {
case Success(sum) => println(sum)
case Failure(e) => println("we got timeout. the unfinished futures are: " + List(futureInt1, futureInt2).filter(!_.isCompleted)
}

Scala Play Websocket - use one out actor to send both: Array[Byte] and String messages

I have Play websockets action:
def socket = WebSocket.acceptWithActor[String, Array[Byte]] { request => out =>
Props(new WebSocketInActor(out))
}
Generally I need to send to browser large raw arrays of data. But sometimes I need to send some small string data. In browser I can detect is data in text format or raw ArrayBuffer.
If I create actor that sends String, I can send string messages, If I create actor that sends with Array[Byte], I can send raw arrays. Both situations I don't need to change client code. So, how can I force Play to use both sending methods with one out actor?
Ah, those answers that comes just after you post question on SO. Looking through reference and sourcecode, I found that there is mixedFrame FrameFromatter: https://github.com/playframework/playframework/blob/2.4.x/framework/src/play/src/main/scala/play/api/mvc/WebSocket.scala#L75
So you just need to say that you will respond with Either[String, Array[Byte]] and if you want to send string use Left(somestring) or else use Right[somearray].
class WebSocketInActor(out: ActorRef) extends Actor {
override def preStart() = {
println("User connected")
val s = "Hello"
out ! Left(s)
out ! Right(s.getBytes("utf8"))
}
override def postStop() = {
println("User discconnected")
}
def receive = {
case msg: String => {
}
case _ =>
}
}
def socket = WebSocket.acceptWithActor[String, Either[String, Array[Byte]]] { request => out =>
Props(new WebSocketInActor(out))
}
UPDATE:
Or you can go one step further and create your own frame formatter
sealed trait WSMessage
case class StringMessage(s: String) extends WSMessage
case class BinaryMessage(a: Array[Byte]) extends WSMessage
case class JsonMessage(js: JsValue) extends WSMessage
implicit object myFrameFormatter extends BasicFrameFormatter[WSMessage] {
private val textFrameClass = classOf[TextFrame]
private val binaryFrameClass = classOf[BinaryFrame]
def toFrame(message: WSMessage): BasicFrame = message match {
case StringMessage(s) => TextFrame(s)
case BinaryMessage(a) => BinaryFrame(a)
case JsonMessage(js) => TextFrame(Json.stringify(js))
}
def fromFrame(frame: BasicFrame): WSMessage = frame match {
case TextFrame(s) => StringMessage(s)
case BinaryFrame(a) => BinaryMessage(a)
}
def fromFrameDefined(clazz: Class[_]): Boolean = clazz match {
case `textFrameClass` => true
case `binaryFrameClass` => true
case _ => false // shouldn't be reachable
}
}
class WebSocketInActor(out: ActorRef) extends Actor {
override def preStart() = {
println("User connected")
val s = "Hello"
val a:Array[Byte] = Array(100, 50, 30).map(_.toByte)
out ! StringMessage(s)
out ! JsonMessage(Json.obj("txt" -> s, "array" -> a))
out ! BinaryMessage(a)
}
override def postStop() = {
println("User discconnected")
}
def receive = {
case msg: String => {
}
case _ =>
}
}
def socket = WebSocket.acceptWithActor[String, WSMessage] { request => out =>
Props(new WebSocketInActor(out))
}

PersistentActor cannot invoke persist handler in Future onComplete

I am pretty new using PersistentActor ,
when I try to call updateState from a future onComplete, fails , nothing happanes , tried to debug it and I do get to the persist call but not into the updateState
trait Event
case class Cmd(data: String)
case class Evt(data: String) extends Event
class BarActor extends PersistentActor{
implicit val system = context.system
implicit val executionContext = system.dispatcher
def updateState(event: Evt): Unit ={
println("Updating state")
state = state.updated(event)
sender() ! state
}
def timeout(implicit ec: ExecutionContext) =
akka.pattern.after(duration = 2 seconds, using = system.scheduler)(Future.failed(new TimeoutException("Got timed out!")))
val receiveCommand: Receive = {
case Cmd(data) =>
def anotherFuture(i: Int)(implicit system: ActorSystem) = {
val realF = Future {
i % 2 match {
case 0 =>
Thread.sleep(100)
case _ =>
Thread.sleep(500)
}
i
}
Future.firstCompletedOf(Seq(realF, timeout))
.recover {
case _ => -1
}
}
val res = (1 to 10).map(anotherFuture(_))
val list = Future.sequence(res)
list.onComplete{
case _ =>
persist(Evt("testing"))(updateState)
}
}
}
You could try this:
list.onComplete {
case _ => self ! Evt("testing")
}
And add this to receiveCommand
case evt: Evt =>
persist(Evt("testing"))(updateStates)

Akka consolidate concurrent database requests

I want to be able to make concurrent requests to multiple data repositories and consolidate the results. I am trying to understand if my approach is at all valid or if there is a better way to approach this problem. I am definitely new to Akka / Spray / Scala and really want to get a better understanding of how to properly build these components. Any suggestions / Tips would be greatly appreciated. Trying to wrap my head around the use of actors and futures for this type of implementation.
Spray Service:
trait DemoService extends HttpService with Actor with ActorLogging {
implicit val timeout = Timeout(5 seconds) // needed for `?` below
val mongoMasterActor = context.actorOf(Props[MongoMasterActor], "redisactor")
val dbMaster = context.actorOf(Props[DbMasterActor], "dbactor")
val messageApiRouting =
path("summary" / Segment / Segment) { (dataset, timeslice) =>
onComplete(getDbResponses(dbMaster, dataset, timeslice)) {
case Success(dbMessageResponse) => complete(s"The result was $dbMessageResponse")
case Failure(ex) => complete(s"An error occurred: ${ex.getMessage}")
}
}
/** Passes the desired actor reference for a specific dataset and timeslice for summary data retrieval
*
* #param mongoActor an actor reference to the RedisActor that will handle the appropriate request routing
* #param dataset The dataset for which the summary has been requested
* #param timeslice The timeslice (Month, Week, Day, etc.) for which the summary has been requested
*/
def getSummary(mongoActor: ActorRef, dataset: String, timeslice: String): Future[DbMessageResponse] = {
log.debug(s"dataset: $dataset timeslice: $timeslice")
val dbMessage = DbMessage("summary", dataset + timeslice)
(mongoActor ? dbMessage).mapTo[DbMessageResponse]
}
def getDbResponses(dbActor: ActorRef, dataset: String, timeslice: String): Future[SummaryResponse] = {
log.debug(s"dataset: $dataset timeslice: $timeslice")
val dbMessage = DbMessage("summary", dataset + timeslice)
(dbActor ? dbMessage).mapTo[SummaryResponse]
}
def getSummaryPayload(mongoSummary: DbMessageResponse, redisSummary: DbMessageResponse): String = {
mongoSummary.response + redisSummary.response
}
}
Akka Actor / Future mock db requests:
class DbMasterActor extends Actor with ActorLogging {
private var originalSender: ActorRef = _
//TODO: Need to add routing to the config to limit instances
val summaryActor = context.actorOf(Props(new SummaryActor), "summaryactor")
def receive = {
case msg: DbMessage => {
this.originalSender = sender
msg.query match {
case "summary" => {
getDbResults().onComplete{
case Success(result) => originalSender ! result
case Failure(ex) => log.error(ex.getMessage)
}
}
}
}
//If not match log an error
case _ => log.error("Received unknown message: {} ")
}
def getDbResults(): Future[SummaryResponse] = {
log.debug("hitting db results")
val mongoResult = Future{ Thread.sleep(500); "Mongo"}
val redisResult = Future{ Thread.sleep(800); "redis"}
for{
mResult <- mongoResult
rResult <- redisResult
} yield SummaryResponse(mResult, rResult)
}
}
Following the reading of Effective Akka by Jamie Allen, I am going to attempt to apply his "Cameo" pattern suggestion.
Slideshare:
http://www.slideshare.net/shinolajla/effective-akka-scalaio
Github:
https://github.com/jamie-allen/effective_akka
I think what I created will work, but doesn't sound like the best approach based on Jamie's comments in his talks. I will update / edit back to this post what I have implemented (or try to).
Summary Actor (Cameo Actor):
object SummaryResponseHandler {
case object DbRetrievalTimeout
def props(mongoDb: ActorRef, redisDb: ActorRef, originalSender: ActorRef): Props = {
Props(new SummaryResponseHandler(mongoDb, redisDb, originalSender))
}
}
class SummaryResponseHandler(mongoDb: ActorRef, redisDb: ActorRef,
originalSender: ActorRef) extends Actor with ActorLogging {
import SummaryResponseHandler._
var mongoSummary, redisSummary: Option[String] = None
def receive = LoggingReceive {
case MongoSummary(summary) =>
log.debug(s"Received mongo summary: $summary")
mongoSummary = summary
collectSummaries
case RedisSummary(summary) =>
log.debug(s"Received redis summary: $summary")
redisSummary = summary
collectSummaries
case DbRetrievalTimeout =>
log.debug("Timeout occurred")
sendResponseAndShutdown(DbRetrievalTimeout)
}
def collectSummaries = (mongoSummary, redisSummary) match {
case (Some(m), Some(r)) =>
log.debug(s"Values received for both databases")
timeoutMessager.cancel
sendResponseAndShutdown(DataSetSummary(mongoSummary, redisSummary))
case _ =>
}
def sendResponseAndShutdown(response: Any) = {
originalSender ! response
log.debug("Stopping context capturing actor")
context.stop(self)
}
import context.dispatcher
val timeoutMessager = context.system.scheduler.scheduleOnce(
250 milliseconds, self, DbRetrievalTimeout)
}
class SummaryRetriever(mongoDb: ActorRef, redisDb: ActorRef) extends Actor with ActorLogging {
def receive = {
case GetSummary(dataSet) =>
log.debug("received dataSet")
val originalSender = sender
val handler = context.actorOf(SummaryResponseHandler.props(mongoDb,redisDb, originalSender), "cameo-message-handler")
mongoDb.tell(GetSummary(dataSet), handler)
redisDb.tell(GetSummary(dataSet), handler)
case _ => log.debug(s"Unknown result $GetSummary(datset)")
}
}
Common:
case class GetSummary(dataSet: String)
case class DataSetSummary(
mongo: Option[String],
redis: Option[String]
)
case class MongoSummary(
summary: Option[String]
)
case class RedisSummary(
summary: Option[String]
)
trait MongoProxy extends Actor with ActorLogging
trait RedisProxy extends Actor with ActorLogging
Mock Stubs:
class MongoProxyStub extends RedisProxy {
val summaryData = Map[String, String](
"dataset1" -> "MongoData1",
"dataset2" -> "MongoData2")
def receive = LoggingReceive {
case GetSummary(dataSet: String) =>
log.debug(s"Received GetSummary for ID: $dataSet")
summaryData.get(dataSet) match {
case Some(data) => sender ! MongoSummary(Some(data))
case None => sender ! MongoSummary(Some(""))
}
}
}
class RedisProxyStub extends MongoProxy{
val summaryData = Map[String, String](
"dataset1" -> "RedisData1",
"dataset2" -> "RedisData2")
def receive = LoggingReceive {
case GetSummary(dataSet: String) =>
log.debug(s"Received GetSummary for ID: $dataSet")
summaryData.get(dataSet) match {
case Some(data) => sender ! RedisSummary(Some(data))
case None => sender ! RedisSummary(Some(""))
}
}
}
Boot (You should use test, but was just wanting to run from boot):
object Boot extends App{
val system = ActorSystem("DbSystem")
val redisProxy = system.actorOf(Props[RedisProxyStub], "cameo-success-mongo")
val mongoProxy = system.actorOf(Props[MongoProxyStub], "cameo-success-redis")
val summaryRetrieverActor = system.actorOf(Props(new SummaryRetriever(redisProxy, mongoProxy)), "cameo-retriever1")
implicit val timeout = Timeout(5 seconds)
val future = summaryRetrieverActor ? GetSummary("dataset1")
val result = Await.result(future, timeout.duration).asInstanceOf[DataSetSummary]
println(Some(result.mongo).x)
println(result.redis)
system.shutdown()
}
Application Config:
akka.loglevel = "DEBUG"
akka.event-handlers = ["akka.event.slf4j.Slf4jEventHandler"]
akka.actor.debug.autoreceive = on
akka.actor.debug.lifecycle = on
akka.actor.debug.receive = on
akka.actor.debug.event-stream = on

How to know which Future fail when doing Future.sequence?

Here is an example receive part of an actor I'm working on:
def receive = {
case "begin" =>
val listOfFutures: IndexedSeq[Future[Any]] = workers.map(worker => worker ? Work("test"))
val future: Future[IndexedSeq[Any]] = Future.sequence(listOfFutures)
future onComplete {
case Success(result) => println("Eventual result: "+result)
case Failure(ex) => println("Failure: "+ex.getMessage)
}
case msg => println("A message received: "+msg)
}
When ask fails for one of the workers (in case of a timeout), sequence future completes with failure. However I want to know which worker(s) have failed. Is there a more elegant way rather than simply mapping listOfFutures one by one without using Future.sequence ?
You can use the future's recover method to map or wrap the underlying exception:
import scala.concurrent.{Future, ExecutionContext}
case class WorkerFailed(name: String, cause: Throwable)
extends Exception(s"$name - ${cause.getMessage}", cause)
def mark[A](name: String, f: Future[A]): Future[A] = f.recover {
case ex => throw WorkerFailed(name, ex)
}
import ExecutionContext.Implicits.global
val f = (0 to 10).map(i => mark(s"i = $i", Future { i / i }))
val g = Future.sequence(f)
g.value // WorkerFailed: i = 0 - / by zero
Thanks to #O__ I have come with another solution that may a better fit some some cases.
case class WorkerDone(name: String)
case class WorkerFailed(name: String)
import ExecutionContext.Implicits.global
val f = (0 to 10).map {
i => Future {i/i; WorkerDone(s"worker$i")}.recover{
case ex => WorkerFailed(s"worker$i")
}
}
val futureSeq = Future.sequence(f)
futureSeq onComplete {
case Success(list) => list.collect {case result:WorkerFailed => result}.foreach {failed => println("Failed: "+failed.name)}
case Failure(ex) => println("Exception: "+ex.getMessage)
}
// just to make sure program doesn't end before onComplete is called.
Thread.sleep(2000L)
I'm not sure that if my example is a good practice, but my aim is to know which workers did fail no matter how did they fail.