connected component analysis in MATLAB - matlab

I want to apply connected component analysis on a grey scale image with considering pixels whose grey level is more than a threshold. then, I want to remove those connected components whose length is less than a threshold. please help me? I wrote following code in MATLAB, is it efficient?
thank you in advance.
%im = input image;
% alpha1 = 0.0001;
% alpha2 = 0.0001;
% [row col] = size(im);
%
%
% thr1 = mean(mean(im))-alpha1*std(std(im));
% BW = zeros(size(im));
%
% for rr = 1:row
% for cc = 1:col
% if im(rr,cc)>thr2
% BW(rr,cc) = 1;
% else
% BW(rr,cc) = 0;
% end
% end
% end
%
% CC = bwconncomp(BW);
% area_in_pixels = cellfun(#length,CC.PixelIdxList);
% thr2 = mean(area_in_pixels)-alpha2*std(area_in_pixels);
% idx = find(area_in_pixels <= thr3);
% for kk = 1:length(idx)
% aaa = idx(kk);
% BW(CC.PixelIdxList{aaa})=0;
% end

You can try regionprops instead to extract all objects in your image. With the code below you get the positions of all objects smaller than a threshold which you can manipulate or do what you need to do afterwards...
Comparably you can go through the different objects and extract the grey level and if it is below a threshold manipulate them.
% Threshold for the size in pixels that you want
threshold = 100;
% read your image
rawimage = imread('yourimage.jpg');
% create a 2D field by summing
im = sum(rawimage,3);
% label all objects that have 8 neighbours
IMAGE_labeled = bwlabel(im,8);
% get the properties of all elements
shapedata=regionprops (IMAGE_labeled,'all');
% get those elements that are smaller in size (area) than the threshold
index = find(cell2mat({shapedata(:).Area})<=threshold);
% make a contourplot of im
figure
contourf(im)
hold on
% creation of colormap with the size of all identified objects below the thres
mycolormap = jet(size(index,2));
% loop over all small objects, extraction of their position in the original file, plotting circles with different colors at the position of each small object
imap = 1;
mean_of_red = zeros(length(index),1);
for i = index
plot (shapedata(i).PixelList(:,1),shapedata(i).PixelList(:,2),'o','MarkerFaceColor',mycolormap(imap,:))
mean_of_red(i) = mean(mean(im(shapedata(i).PixelList(:,1),shapedata(i).PixelList(:,1),1)));
imap=imap+1;
end

Related

Axially loaded stepped shaft analysis in MATLAB

I have a stepped shaft as per the attached image. Following information available as an input parameters:
Young's modulus 123e3N/mm^2.
Cross-sectional area 300mm^2 for the length of 400mm
Cross-sectional area 400mm^2 for the length of 250mm
Axial force of 200kN acts axially on the shaft and the location of load is at 200mm from the one end of the shaft on cross-sectional area of 300mm^2
I need help to make do finite element analysis in MATALB.
Please help me in making MATLAB code for this.
%% Clearing workspace
clc
clear
close all
%% Element specifications
ne = 3; % Number of elements
nne = 2; % Number of nodes per element
nn = ne*(nne - 1) + 1; % total number of nodes
ndof = 1; % Number of degress of freedom per node
sg = nn*ndof; % size of global stiffness matrix
se = nne*ndof; % size of elemental stiffness matrix
KG = zeros(sg,sg); % Global stiffness matrix
Ke = zeros(se,se); % Elemental Stiffness MAtrix
Fe = zeros(se,1); % Elemental Force Vector
FG = zeros(sg,1); % Global Force Vector
%% Geometrical parameters
E = 123e3*ones(1,ne); % Young's Modulus in N/mm^2
P = 200e3; % Force in N
F = P;
A = ones(1,ne) ; % Area of cross-section
A(1)=300; % Area of cross-section of 1st element in mm^2
A(2)=300; % Area of cross-section of 2nd element in mm^2
A(3)=400; % Area of cross-section of 3rd element in mm^2
L = ones(1,ne); % Length of elements in mm
L(1)=200; % Length of 1st element in mm
L(2)=200; % Length of 2nd element in mm
L(3)=250; % Length of 3rd element in mm
%% Assembly of Global Stiffness Matrix
for i = 1:ne
Ke = (A(i)*E(i)/L(i))*[1 -1;-1 1]; % Element Stiffness Matrix
for j = 1:se
for k = 1:se
KG(i + j - 1, i + k - 1) = KG(i + j - 1, i + k - 1) + Ke(j,k);
end
end
end
%% Concentrated Load Vector at end
FG(2,1) = F; % Defining location of concentrated load
%% Application of boundary conditions
KGS = KG;
cdof = [1 4]; % specify fixed degree of freedom number
Lcdof = length(cdof);
for a = 1:Lcdof
KGS(cdof(a),:) = 0;
KGS(:,cdof(a)) = 1;
FG(cdof(a),1) = 0;
end
FGL = length(FG);
for b = 1:FGL
if(b > length(FG))
elseif(FG(b)<0)
FG(b) = [];
end
end
%% Solving for displacement
U = linsolve(KGS,FG)
U1=KGS\FG
%% Calculation of Reaction Forces
FR = KG*U1

Reverse 'buffer' function in Matlab

MATLAB's buffer function partitions a vector into a matrix where each column is a segment of the vector (time series in my problem). These segments can be overlapping, and the overlap does not need to be 50%.
I was wondering if there is a reverse operation where one would get back a vector after doing some operations on the matrix? I was thinking of a generic solution where the overlap is not 50%.
I have searched the question archive and couldn't find any answer.
Thanks
You can use this simple function I wrote. There is also a simple example commented that you can run and test.
function invbuff = invbuffer(X_buff0, noverlap, L)
% Example:
% % % A = (1:40)';
% % % N_over = 2;
% % % N_window = 15;
% % % L = length(A);
% % % Abuff0 = buffer(A, N_window, N_over);
% % % Abuff = Abuff0(:, 1:end-0);
% % % invbuff = invbuffer(Abuff, N_over, L);
invbuff0 = [];
for jj=1:size(X_buff0,2)
vec00 = X_buff0(:,jj);
vec00(1:noverlap) = []; % remove overlapping (or it is zero padding of first frame)
invbuff0 = [invbuff0; vec00];
end
invbuff = invbuff0;
invbuff(L+1:end) = []; % remove zero padding of last frame
% sum(sum([A - invbuff])); % == 0
end
Good luck!

Convert Matlab code into Simulink

I would like to convert a image processing program(part of the program below) from Matlab to Simulink and possibly convert the simulink diagram into C code later on. I have 0 experience in Simulink and was wondering if there's any limitations on the types of matlab program/functions that can be converted and how I would go about doing this. Thanks.
clear all
clc
% Read in an image 1
C1 = imread('cloud1.jpg');
Cloud1 = C1(:,:,1); % use only one color
%Cloud1 = Cloud1'; % transpose to get (x,y) instead of (y,x)
Cloud1_xsize = size(Cloud1,2); % get x size of image
Cloud1_ysize = size(Cloud1,1); % get y size of image
%figure(3), imshow(Cloud1) % to plot you need to transpose back to their coordinate system
%hold on
% Read in an image 2
C2 = imread('cloud2.jpg');
Cloud2 = C2(:,:,1); % use only one color
%Cloud2 = Cloud2'; % transpose to get (x,y) instead of (y,x)
Cloud2_xsize = size(Cloud2,2); % get x size of image
Cloud2_ysize = size(Cloud2,1); % get y size of image
%figure(2), imshow(Cloud2)
%hold on
% show the shift in the initial images several times
num = 0;
for k = 1:4
num=num+1;
pause(.5)
figure(1), h1=imshow(C1)
xlabel('FIGURE 1')
F(num) = getframe(gcf);
%image(F.cdata)
%colormap(F.colormap)
pause(0.25)
figure(1), h2=imshow(C2)
xlabel('FIGURE 2')
num=num+1;
F(num) = getframe(gcf);
%image(F.cdata)
%colormap(F.colormap)
end
% Play the movie twenty times
%movie(F,20)
%%%% Set the template size %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% First calc the number of pixels in the shortest direction of the image (usually y direction)
MinSize = min(Cloud1_xsize, Cloud1_ysize); % number of pixels in shortest direction
%%% N is the minimum number of boxes in the shorter direction (usually y direction).
%%% In the shorter axis (usually y)there will be N-2 boxes analyzed.
%%% This is because the top and bottom boxes are considered too close to the edge to use.
%%% In the larger direction (usually x) there may be more boxes.
N = 6;
EdgeBoxSize = 1; % the number of edge boxes along each edge
TempWidth = floor(MinSize / N); % the pixel width of each template box
TempHeight = TempWidth; % make the template height and width the same size so corr part works good
%%% Now calculate the exact number of boxes in x and y directions
%%% This depends on the number of x versus y pixels.
Nx = floor(Cloud1_xsize/TempWidth);
Ny = floor(Cloud1_ysize/TempWidth);

Regarding visualization of movement of the data points in training of the Self-Organizing Map (SOM) using Simulink

I have implemented the Self-Organizing Map(SOM) algorithm in MATLAB. Suppose each of the data points are represented in 2-dimensional space. The problem is that I want to visualize the movement of each of the data points in the training phase i.e. I want to see how the points are moving and eventually forming clusters as the algorithm is in progress say at every fix duration. I believe that this can be done through Simulation in MATLAB,but I don't know how to incorporate my MATLAB code for visualization?
I developed a code example to visualize clustering data with multiple dimensions using all possible data projection in 2-D. It may not be the best idea for visualization (there are techniques developed for this, as SOM itself may be used for this need), specially for a higher dimension numbers, but when the number of possible projections (n-1)! is not that high it is a quite good visualizer.
Cluster Algorithm 
Since I needed access to the code so that I could save the cluster means and cluster labels for each iteration, I used a fast kmeans algorithm available at FEX by Mo Chen, but I had to adapt it so I could have this access. The adapted code is the following:
function [label,m] = litekmeans(X, k)
% Perform k-means clustering.
% X: d x n data matrix
% k: number of seeds
% Written by Michael Chen (sth4nth#gmail.com).
n = size(X,2);
last = 0;
iter = 1;
label{iter} = ceil(k*rand(1,n)); % random initialization
checkLabel = label{iter};
m = {};
while any(checkLabel ~= last)
[u,~,checkLabel] = unique(checkLabel); % remove empty clusters
k = length(u);
E = sparse(1:n,checkLabel,1,n,k,n); % transform label into indicator matrix
curM = X*(E*spdiags(1./sum(E,1)',0,k,k)); % compute m of each cluster
m{iter} = curM;
last = checkLabel';
[~,checkLabel] = max(bsxfun(#minus,curM'*X,dot(curM,curM,1)'/2),[],1); % assign samples to the nearest centers
iter = iter + 1;
label{iter} = checkLabel;
end
% Get last clusters centers
m{iter} = curM;
% If to remove empty clusters:
%for k=1:iter
% [~,~,label{k}] = unique(label{k});
%end
Gif Creation
I also used #Amro's Matlab video tutorial for the gif creation.
Distinguishable Colors
I used this great FEX by Tim Holy for making the cluster colors easier to distinguish.
Resulting code
My resulting code is as follows. I had some issues because the number of clusters would change for each iteration which would cause scatter plot update to delete all cluster centers without giving any errors. Since I didn't noticed that, I was trying to workaround the scatter function with any obscure method that I could find the web (btw, I found a really nice scatter plot alternative here), but fortunately I got what was happening going back to this today. Here is the code I did for it, you may feel free to use it, adapt it, but please keep my reference if you use it.
function varargout=kmeans_test(data,nClusters,plotOpts,dimLabels,...
bigXDim,bigYDim,gifName)
%
% [label,m,figH,handles]=kmeans_test(data,nClusters,plotOpts,...
% dimLabels,bigXDim,bigYDim,gifName)
% Demonstrate kmeans algorithm iterative progress. Inputs are:
%
% -> data (rand(5,100)): the data to use.
%
% -> nClusters (7): number of clusters to use.
%
% -> plotOpts: struct holding the following fields:
%
% o leftBase: the percentage distance from the left
%
% o rightBase: the percentage distance from the right
%
% o bottomBase: the percentage distance from the bottom
%
% o topBase: the percentage distance from the top
%
% o FontSize: FontSize for axes labels.
%
% o widthUsableArea: Total width occupied by axes
%
% o heigthUsableArea: Total heigth occupied by axes
%
% -> bigXDim (1): the big subplot x dimension
%
% -> bigYDim (2): the big subplot y dimension
%
% -> dimLabels: If you want to specify dimensions labels
%
% -> gifName: gif file name to save
%
% Outputs are:
%
% -> label: Sample cluster center number for each iteration
%
% -> m: cluster center mean for each iteration
%
% -> figH: figure handle
%
% -> handles: axes handles
%
%
% - Creation Date: Fri, 13 Sep 2013
% - Last Modified: Mon, 16 Sep 2013
% - Author(s):
% - W.S.Freund <wsfreund_at_gmail_dot_com>
%
% TODO List (?):
%
% - Use input parser
% - Adapt it to be able to cluster any algorithm function.
% - Use arrows indicating cluster centers movement before moving them.
% - Drag and drop small axes to big axes.
%
% Pre-start
if nargin < 7
gifName = 'kmeansClusterization.gif';
if nargin < 6
bigYDim = 2;
if nargin < 5
bigXDim = 1;
if nargin < 4
nDim = size(data,1);
maxDigits = numel(num2str(nDim));
dimLabels = mat2cell(sprintf(['Dim %0' num2str(maxDigits) 'd'],...
1:nDim),1,zeros(1,nDim)+4+maxDigits);
if nargin < 3
plotOpts = struct('leftBase',.05,'rightBase',.02,...
'bottomBase',.05,'topBase',.02,'FontSize',10,...
'widthUsableArea',.87,'heigthUsableArea',.87);
if nargin < 2
nClusters = 7;
if nargin < 1
center1 = [1; 0; 0; 0; 0];
center2 = [0; 1; 0; 0; 0];
center3 = [0; 0; 1; 0; 0];
center4 = [0; 0; 0; 1; 0];
center5 = [0; 0; 0; 0; 1];
center6 = [0; 0; 0; 0; 1.5];
center7 = [0; 0; 0; 1.5; 1];
data = [...
bsxfun(#plus,center1,.5*rand(5,20)) ...
bsxfun(#plus,center2,.5*rand(5,20)) ...
bsxfun(#plus,center3,.5*rand(5,20)) ...
bsxfun(#plus,center4,.5*rand(5,20)) ...
bsxfun(#plus,center5,.5*rand(5,20)) ...
bsxfun(#plus,center6,.2*rand(5,20)) ...
bsxfun(#plus,center7,.2*rand(5,20)) ...
];
end
end
end
end
end
end
end
% NOTE of advice: It seems that Matlab does not test while on
% refreshdata if the dimension of the inputs are equivalent for the
% XData, YData and CData while using scatter. Because of this I wasted
% a lot of time trying to debug what was the problem, trying many
% workaround since my cluster centers would disappear for no reason.
% Draw axes:
nDim = size(data,1);
figH = figure;
set(figH,'Units', 'normalized', 'Position',...
[0, 0, 1, 1],'Color','w','Name',...
'k-means example','NumberTitle','Off',...
'MenuBar','none','Toolbar','figure',...
'Renderer','zbuffer');
% Create dintinguishable colors matrix:
colorMatrix = distinguishable_colors(nClusters);
% Create axes, deploy them on handles matrix more or less how they
% will be positioned:
[handles,horSpace,vertSpace] = ...
createAxesGrid(5,5,plotOpts,dimLabels);
% Add main axes
bigSubSize = ceil(nDim/2);
bigSubVec(bigSubSize^2) = 0;
for k = 0:nDim-bigSubSize
bigSubVec(k*bigSubSize+1:(k+1)*bigSubSize) = ...
... %(nDim-bigSubSize+k)*nDim+1:(nDim-bigSubSize+k)*nDim+(nDim-bigSubSize+1);
bigSubSize+nDim*k:nDim*(k+1);
end
handles(bigSubSize,bigSubSize) = subplot(nDim,nDim,bigSubVec,...
'FontSize',plotOpts.FontSize,'box','on');
bigSubplotH = handles(bigSubSize,bigSubSize);
horSpace(bigSubSize,bigSubSize) = bigSubSize;
vertSpace(bigSubSize,bigSubSize) = bigSubSize;
set(bigSubplotH,'NextPlot','add',...
'FontSize',plotOpts.FontSize,'box','on',...
'XAxisLocation','top','YAxisLocation','right');
% Squeeze axes through space to optimize space usage and improve
% visualization capability:
[leftPos,botPos,subplotWidth,subplotHeight]=setCustomPlotArea(...
handles,plotOpts,horSpace,vertSpace);
pColorAxes = axes('Position',[leftPos(end) botPos(end) ...
subplotWidth subplotHeight],'Parent',figH);
pcolor([1:nClusters+1;1:nClusters+1])
% image(reshape(colorMatrix,[1 size(colorMatrix)])); % Used image to
% check if the upcoming buggy behaviour would be fixed. I was not
% lucky, though...
colormap(pColorAxes,colorMatrix);
% Change XTick positions to its center:
set(pColorAxes,'XTick',.5:1:nClusters+.5);
set(pColorAxes,'YTick',[]);
% Change its label to cluster number:
set(pColorAxes,'XTickLabel',[nClusters 1:nClusters-1]); % FIXME At
% least on my matlab I have to use this buggy way to set XTickLabel.
% Am I doing something wrong? Since I dunno why this is caused, I just
% change the code so that it looks the way it should look, but this is
% quite strange...
xlabel(pColorAxes,'Clusters Colors','FontSize',plotOpts.FontSize);
% Now iterate throw data and get cluster information:
[label,m]=litekmeans(data,nClusters);
nIters = numel(m)-1;
scatterColors = colorMatrix(label{1},:);
annH = annotation('textbox',[leftPos(1),botPos(1) subplotWidth ...
subplotHeight],'String',sprintf('Start Conditions'),'EdgeColor',...
'none','FontSize',18);
% Creates dimData_%d variables for first iteration:
for curDim=1:nDim
curDimVarName = genvarname(sprintf('dimData_%d',curDim));
eval([curDimVarName,'= m{1}(curDim,:);']);
end
% clusterColors will hold the colors for the total number of clusters
% on each iteration:
clusterColors = colorMatrix;
% Draw cluster information for first iteration:
for curColumn=1:nDim
for curLine=curColumn+1:nDim
% Big subplot data:
if curColumn == bigXDim && curLine == bigYDim
curAxes = handles(bigSubSize,bigSubSize);
curScatter = scatter(curAxes,data(curColumn,:),...
data(curLine,:),16,'filled');
set(curScatter,'CDataSource','scatterColors');
% Draw cluster centers
curColumnVarName = genvarname(sprintf('dimData_%d',curColumn));
curLineVarName = genvarname(sprintf('dimData_%d',curLine));
eval(['curScatter=scatter(curAxes,' curColumnVarName ',' ...
curLineVarName ',100,colorMatrix,''^'',''filled'');']);
set(curScatter,'XDataSource',curColumnVarName,'YDataSource',...
curLineVarName,'CDataSource','clusterColors')
end
% Small subplots data:
curAxes = handles(curLine,curColumn);
% Draw data:
curScatter = scatter(curAxes,data(curColumn,:),...
data(curLine,:),16,'filled');
set(curScatter,'CDataSource','scatterColors');
% Draw cluster centers
curColumnVarName = genvarname(sprintf('dimData_%d',curColumn));
curLineVarName = genvarname(sprintf('dimData_%d',curLine));
eval(['curScatter=scatter(curAxes,' curColumnVarName ',' ...
curLineVarName ',100,colorMatrix,''^'',''filled'');']);
set(curScatter,'XDataSource',curColumnVarName,'YDataSource',...
curLineVarName,'CDataSource','clusterColors');
if curLine==nDim
xlabel(curAxes,dimLabels{curColumn});
set(curAxes,'XTick',xlim(curAxes));
end
if curColumn==1
ylabel(curAxes,dimLabels{curLine});
set(curAxes,'YTick',ylim(curAxes));
end
end
end
refreshdata(figH,'caller');
% Preallocate gif frame. From Amro's tutorial here:
% https://stackoverflow.com/a/11054155/1162884
f = getframe(figH);
[f,map] = rgb2ind(f.cdata, 256, 'nodither');
mov = repmat(f, [1 1 1 nIters+4]);
% Add one frame at start conditions:
curFrame = 1;
% Add three frames without movement at start conditions
f = getframe(figH);
mov(:,:,1,curFrame) = rgb2ind(f.cdata, map, 'nodither');
for curIter = 1:nIters
curFrame = curFrame+1;
% Change label text
set(annH,'String',sprintf('Iteration %d',curIter));
% Update cluster point colors
scatterColors = colorMatrix(label{curIter+1},:);
% Update cluster centers:
for curDim=1:nDim
curDimVarName = genvarname(sprintf('dimData_%d',curDim));
eval([curDimVarName,'= m{curIter+1}(curDim,:);']);
end
% Update cluster colors:
nClusterIter = size(m{curIter+1},2);
clusterColors = colorMatrix(1:nClusterIter,:);
% Update graphics:
refreshdata(figH,'caller');
% Update cluster colors:
if nClusterIter~=size(m{curIter},2) % If number of cluster
% of current iteration differs from previous iteration (or start
% conditions in case we are at first iteration) we redraw colors:
pcolor([1:nClusterIter+1;1:nClusterIter+1])
% image(reshape(colorMatrix,[1 size(colorMatrix)])); % Used image to
% check if the upcomming buggy behaviour would be fixed. I was not
% lucky, though...
colormap(pColorAxes,clusterColors);
% Change XTick positions to its center:
set(pColorAxes,'XTick',.5:1:nClusterIter+.5);
set(pColorAxes,'YTick',[]);
% Change its label to cluster number:
set(pColorAxes,'XTickLabel',[nClusterIter 1:nClusterIter-1]);
xlabel(pColorAxes,'Clusters Colors','FontSize',plotOpts.FontSize);
end
f = getframe(figH);
mov(:,:,1,curFrame) = rgb2ind(f.cdata, map, 'nodither');
end
set(annH,'String','Convergence Conditions');
for curFrame = nIters+1:nIters+3
% Add three frames without movement at start conditions
f = getframe(figH);
mov(:,:,1,curFrame) = rgb2ind(f.cdata, map, 'nodither');
end
imwrite(mov, map, gifName, 'DelayTime',.5, 'LoopCount',inf)
varargout = cell(1,nargout);
if nargout > 0
varargout{1} = label;
if nargout > 1
varargout{2} = m;
if nargout > 2
varargout{3} = figH;
if nargout > 3
varargout{4} = handles;
end
end
end
end
end
function [leftPos,botPos,subplotWidth,subplotHeight] = ...
setCustomPlotArea(handles,plotOpts,horSpace,vertSpace)
%
% -> handles: axes handles
%
% -> plotOpts: struct holding the following fields:
%
% o leftBase: the percentage distance from the left
%
% o rightBase: the percentage distance from the right
%
% o bottomBase: the percentage distance from the bottom
%
% o topBase: the percentage distance from the top
%
% o widthUsableArea: Total width occupied by axes
%
% o heigthUsableArea: Total heigth occupied by axes
%
% -> horSpace: the axes units size (integers only) that current axes
% should occupy in the horizontal (considering that other occupied
% axes handles are empty)
%
% -> vertSpace: the axes units size (integers only) that current axes
% should occupy in the vertical (considering that other occupied
% axes handles are empty)
%
nHorSubPlot = size(handles,1);
nVertSubPlot = size(handles,2);
if nargin < 4
horSpace(nHorSubPlot,nVertSubPlot) = 0;
horSpace = horSpace+1;
if nargin < 3
vertSpace(nHorSubPlot,nVertSubPlot) = 0;
vertSpace = vertSpace+1;
end
end
subplotWidth = plotOpts.widthUsableArea/nHorSubPlot;
subplotHeight = plotOpts.heigthUsableArea/nVertSubPlot;
totalWidth = (1-plotOpts.rightBase) - plotOpts.leftBase;
totalHeight = (1-plotOpts.topBase) - plotOpts.bottomBase;
gapHeigthSpace = (totalHeight - ...
plotOpts.heigthUsableArea)/(nVertSubPlot);
gapWidthSpace = (totalWidth - ...
plotOpts.widthUsableArea)/(nHorSubPlot);
botPos(nVertSubPlot) = plotOpts.bottomBase + gapWidthSpace/2;
leftPos(1) = plotOpts.leftBase + gapHeigthSpace/2;
botPos(nVertSubPlot-1:-1:1) = botPos(nVertSubPlot) + (subplotHeight +...
gapHeigthSpace)*(1:nVertSubPlot-1);
leftPos(2:nHorSubPlot) = leftPos(1) + (subplotWidth +...
gapWidthSpace)*(1:nHorSubPlot-1);
for curLine=1:nHorSubPlot
for curColumn=1:nVertSubPlot
if handles(curLine,curColumn)
set(handles(curLine,curColumn),'Position',[leftPos(curColumn)...
botPos(curLine) horSpace(curLine,curColumn)*subplotWidth ...
vertSpace(curLine,curColumn)*subplotHeight]);
end
end
end
end
function [handles,horSpace,vertSpace] = ...
createAxesGrid(nLines,nColumns,plotOpts,dimLabels)
handles = zeros(nLines,nColumns);
% Those hold the axes size units:
horSpace(nLines,nColumns) = 0;
vertSpace(nLines,nColumns) = 0;
for curColumn=1:nColumns
for curLine=curColumn+1:nLines
handles(curLine,curColumn) = subplot(nLines,...
nColumns,curColumn+(curLine-1)*nColumns);
horSpace(curLine,curColumn) = 1;
vertSpace(curLine,curColumn) = 1;
curAxes = handles(curLine,curColumn);
if feature('UseHG2')
colormap(handle(curAxes),colorMatrix);
end
set(curAxes,'NextPlot','add',...
'FontSize',plotOpts.FontSize,'box','on');
if curLine==nLines
xlabel(curAxes,dimLabels{curColumn});
else
set(curAxes,'XTick',[]);
end
if curColumn==1
ylabel(curAxes,dimLabels{curLine});
else
set(curAxes,'YTick',[]);
end
end
end
end
Example
Here is an example using 5 dimensions, using the code:
center1 = [1; 0; 0; 0; 0];
center2 = [0; 1; 0; 0; 0];
center3 = [0; 0; 1; 0; 0];
center4 = [0; 0; 0; 1; 0];
center5 = [0; 0; 0; 0; 1];
center6 = [0; 0; 0; 0; 1.5];
center7 = [0; 0; 0; 1.5; 1];
data = [...
bsxfun(#plus,center1,.5*rand(5,20)) ...
bsxfun(#plus,center2,.5*rand(5,20)) ...
bsxfun(#plus,center3,.5*rand(5,20)) ...
bsxfun(#plus,center4,.5*rand(5,20)) ...
bsxfun(#plus,center5,.5*rand(5,20)) ...
bsxfun(#plus,center6,.2*rand(5,20)) ...
bsxfun(#plus,center7,.2*rand(5,20)) ...
];
[label,m,figH,handles]=kmeans_test(data,20);

Extracting image region within boundary

I have to do a project using 2D CT images and segment liver and tumor in it using Matlab(only). Initially i have to segment liver region alone. I use region growing for liver segmentation. It gets seed point as input.
The output is an image with a boundary for liver region. Now I need the region that is surrounded by the boundary alone.
My program has a main program and a regionGrowing.m function. As I'm a new user am not allowed to post images. If you do need images I will mail you. Kindly help me.
% mainreg.m
IR=imread('nfliver5.jpg');
figure, imshow(IR), hold all
poly = regionGrowing(IR,[],15,1200); % click somewhere inside the liver
plot(poly(:,1), poly(:,2), 'LineWidth', 2, 'Color', [1 1 1])
%regionGrowing.m
function [P, J] = regionGrowing(cIM, initPos, thresVal, maxDist, tfMean, tfFillHoles, tfSimplify)
% REGIONGROWING Region growing algorithm for 2D/3D grayscale images
%
% Syntax:
% P = regionGrowing();
% P = regionGrowing(cIM);
% P = regionGrowing(cIM, initPos)
% P = regionGrowing(..., thresVal, maxDist, tfMean, tfFillHoles, tfSimpl)
% [P, J] = regionGrowing(...);
%
% Inputs:
% cIM: 2D/3D grayscale matrix {current image}
% initPos: Coordinates for initial seed position {ginput position}
% thresVal: Absolute threshold level to be included {5% of max-min}
% maxDist: Maximum distance to the initial position in [px] {Inf}
% tfMean: Updates the initial value to the region mean (slow) {false}
% tfFillHoles: Fills enclosed holes in the binary mask {true}
% tfSimplify: Reduces the number of vertices {true, if dpsimplify exists}
%
% Outputs:
% P: VxN array (with V number of vertices, N number of dimensions)
% P is the enclosing polygon for all associated pixel/voxel
% J: Binary mask (with the same size as the input image) indicating
% 1 (true) for associated pixel/voxel and 0 (false) for outside
%
% Examples:
% % 2D Example
% load example
% figure, imshow(cIM, [0 1500]), hold all
% poly = regionGrowing(cIM, [], 300); % click somewhere inside the lungs
% plot(poly(:,1), poly(:,2), 'LineWidth', 2)
%
% % 3D Example
% load mri
% poly = regionGrowing(squeeze(D), [66,55,13], 60, Inf, [], true, false);
% plot3(poly(:,1), poly(:,2), poly(:,3), 'x', 'LineWidth', 2)
%
% Requirements:
% TheMathWorks Image Processing Toolbox for bwboundaries() and axes2pix()
% Optional: Line Simplification by Wolfgang Schwanghart to reduce the
% number of polygon vertices (see the MATLAB FileExchange)
%
% Remarks:
% The queue is not preallocated and the region mean computation is slow.
% I haven't implemented a preallocation nor a queue counter yet for the
% sake of clarity, however this would be of course more efficient.
%
% Author:
% Daniel Kellner, 2011, braggpeaks{}googlemail.com
% History: v1.00: 2011/08/14
% error checking on input arguments
if nargin > 7
error('Wrong number of input arguments!')
end
if ~exist('cIM', 'var')
himage = findobj('Type', 'image');
if isempty(himage) || length(himage) > 1
error('Please define one of the current images!')
end
cIM = get(himage, 'CData');
end
if ~exist('initPos', 'var') || isempty(initPos)
himage = findobj('Type', 'image');
if isempty(himage)
himage = imshow(cIM, []);
end
% graphical user input for the initial position
p = ginput(1);
% get the pixel position concerning to the current axes coordinates
initPos(1) = round(axes2pix(size(cIM, 2), get(himage, 'XData'), p(2)));
initPos(2) = round(axes2pix(size(cIM, 1), get(himage, 'YData'), p(1)));
end
if ~exist('thresVal', 'var') || isempty(thresVal)
thresVal = double((max(cIM(:)) - min(cIM(:)))) * 0.05;
end
if ~exist('maxDist', 'var') || isempty(maxDist)
maxDist = Inf;
end
if ~exist('tfMean', 'var') || isempty(tfMean)
tfMean = false;
end
if ~exist('tfFillHoles', 'var')
tfFillHoles = true;
end
if isequal(ndims(cIM), 2)
initPos(3) = 1;
elseif isequal(ndims(cIM),1) || ndims(cIM) > 3
error('There are only 2D images and 3D image sets allowed!')
end
[nRow, nCol, nSli] = size(cIM);
if initPos(1) < 1 || initPos(2) < 1 ||...
initPos(1) > nRow || initPos(2) > nCol
error('Initial position out of bounds, please try again!')
end
if thresVal < 0 || maxDist < 0
error('Threshold and maximum distance values must be positive!')
end
if ~isempty(which('dpsimplify.m'))
if ~exist('tfSimplify', 'var')
tfSimplify = true;
end
simplifyTolerance = 1;
else
tfSimplify = false;
end
% initial pixel value
regVal = double(cIM(initPos(1), initPos(2), initPos(3)));
% text output with initial parameters
disp(['RegionGrowing Opening: Initial position (' num2str(initPos(1))...
'|' num2str(initPos(2)) '|' num2str(initPos(3)) ') with '...
num2str(regVal) ' as initial pixel value!'])
% preallocate array
J = false(nRow, nCol, nSli);
% add the initial pixel to the queue
queue = [initPos(1), initPos(2), initPos(3)];
%%% START OF REGION GROWING ALGORITHM
while size(queue, 1)
% the first queue position determines the new values
xv = queue(1,1);
yv = queue(1,2);
zv = queue(1,3);
% .. and delete the first queue position
queue(1,:) = [];
% check the neighbors for the current position
for i = -1:1
for j = -1:1
for k = -1:1
if xv+i > 0 && xv+i <= nRow &&... % within the x-bounds?
yv+j > 0 && yv+j <= nCol &&... % within the y-bounds?
zv+k > 0 && zv+k <= nSli &&... % within the z-bounds?
any([i, j, k]) &&... % i/j/k of (0/0/0) is redundant!
~J(xv+i, yv+j, zv+k) &&... % pixelposition already set?
sqrt( (xv+i-initPos(1))^2 +...
(yv+j-initPos(2))^2 +...
(zv+k-initPos(3))^2 ) < maxDist &&... % within distance?
cIM(xv+i, yv+j, zv+k) <= (regVal + thresVal) &&...% within range
cIM(xv+i, yv+j, zv+k) >= (regVal - thresVal) % of the threshold?
% current pixel is true, if all properties are fullfilled
J(xv+i, yv+j, zv+k) = true;
% add the current pixel to the computation queue (recursive)
queue(end+1,:) = [xv+i, yv+j, zv+k];
if tfMean
regVal = mean(mean(cIM(J > 0))); % --> slow!
end
end
end
end
end
end
%%% END OF REGION GROWING ALGORITHM
% loop through each slice, fill holes and extract the polygon vertices
P = [];
for cSli = 1:nSli
if ~any(J(:,:,cSli))
continue
end
% use bwboundaries() to extract the enclosing polygon
if tfFillHoles
% fill the holes inside the mask
J(:,:,cSli) = imfill(J(:,:,cSli), 'holes');
B = bwboundaries(J(:,:,cSli), 8, 'noholes');
else
B = bwboundaries(J(:,:,cSli));
end
newVertices = [B{1}(:,2), B{1}(:,1)];
% simplify the polygon via Line Simplification
if tfSimplify
newVertices = dpsimplify(newVertices, simplifyTolerance);
end
% number of new vertices to be added
nNew = size(newVertices, 1);
% append the new vertices to the existing polygon matrix
if isequal(nSli, 1) % 2D
P(end+1:end+nNew, :) = newVertices;
else % 3D
P(end+1:end+nNew, :) = [newVertices, repmat(cSli, nNew, 1)];
end
end
% text output with final number of vertices
disp(['RegionGrowing Ending: Found ' num2str(length(find(J)))...
' pixels within the threshold range (' num2str(size(P, 1))...
' polygon vertices)!'])
If I understand you correctly, you have a binary image of the boundary of the kidney and now need to set the inside of the boundary to 1s. To do this, you can use the imfill() function with the 'holes' setting on.
BW2 = imfill(BW,'holes');
EDIT: Looking at the code, it seems that it does what you want already.
% Outputs:
% J: Binary mask (with the same size as the input image) indicating
% 1 (true) for associated pixel/voxel and 0 (false) for outside
so you just need to get the second output as well:
IR=imread('nfliver5.jpg');
figure, imshow(IR), hold all
[poly im] = regionGrowing(IR,[],15,1200); % click somewhere inside the liver
imshow(im,[])
Now im is a binary image with your segmented region.
EDIT2:
Once you have the binary image im, you can simply use element-wise multiplication to remove all parts of the orignal image outside the segmented region.
SEG = IR.*im;
imshow(SEG,[])
EDIT3:
For 3D images, you need to specify the coordinates manually, and not by using the mouse. This is because the mouse only gives us 2 coordinates (x and y) and you need 3 (x,y and z). So just find the coordinates you need by looking at the image, and then choosing an appropriate z coordinate.
%Example coordinates,
coordinates = [100 100 5]
poly = regionGrowing(squeeze(IR), coordinates, 60, Inf, [], true, false);