Matlab: Remove diagonal from matrix and reform - matlab

I would like to remove the diagonal of the following matrix;
[0 1 1
0 0 0
0 1 0]
and put this in a vector as such
[1 1 0 0 0 1]
Is there a one-way function to do this?
Most other solutions I found on Stack Overflow delete all zeros.

If two lines are fine...
x = x.'; %'// transpose because you want to work along 2nd dimension first
result = x(~eye(size(x))).'; %'// index with logical mask to remove diagonal

Here's an almost one-liner -
[m,n] = size(x);
x(setdiff(reshape(reshape(1:numel(x),m,n).',1,[]),1:m+1:numel(x),'stable'))
And I will put up my fav bsxfun here -
xt = x.'; %//'
[m,n] = size(x);
out = xt(bsxfun(#ne,(1:n)',1:m)).'
Sample run -
>> x
x =
52 62 37 88
23 68 98 91
49 40 4 79
>> [m,n] = size(x);
>> x(setdiff(reshape(reshape(1:numel(x),m,n).',1,[]),1:m+1:numel(x),'stable'))
ans =
62 37 88 23 98 91 49 40 79
>> xt = x.';
>> xt(bsxfun(#ne,(1:n)',1:m)).'
ans =
62 37 88 23 98 91 49 40 79

Related

List all index using ismember

So say I have two arrays:
A:14 63 13
38 44 23
11 12 13
38 44 23
B:38 44 23
I am trying to use ismember to return the index of every location where B is found in A. All examples I have found online only list the first or last occurrence of a match, I am trying to have a list indices for all values that match, even repeating ones. Thanks
Use ismember with the 'rows' arugment:
ismember(A, B, 'rows')
which results in a logical array [0 1 0 1] which is often better than an array of indices but if you want the indices specifically then just use find:
find(ismember(A,B,'rows'))
to return [2,4]
Note that this method will still work if B has multiple rows e.g. B = [38 44 23; 11 12 13], it will return [0; 1; 1; 1]
You can use bsxfun for the comarison:
idx = find( all( bsxfun(#eq, A, B), 2 )); %// only where all line matches
Results with
idx =
2
4
You can look into pdist2 if you have A and B as Nx3 sized arrays -
[indA,indB] = ind2sub([size(A,1) size(B,1)],find(pdist2(A,B)==0));
ind = [indA,indB]
Thus, in ind you would have the pairwise indices for the matches with the first column representing the indices for A and the second one for B.
Sample run -
A =
14 63 13
38 44 23
11 12 13
14 63 13
38 44 23
B =
38 44 23
14 63 13
ind =
2 1
5 1
1 2
4 2
This is just an improved version of shai's answer for handling multiple rows of B
idx = find(any(all( bsxfun(#eq, A, permute(B,[3 2 1])), 2 ),3));
Sample Run:
A = [14 63 13;
38 44 23;
11 12 13;
38 44 23];
B = [38 44 23;
11 12 13];
idx = find(any(all( bsxfun(#eq, A, permute(B,[3 2 1])), 2 ),3));
>> idx
idx =
2
3
4

Fast way to find the neighboor of pixel

I am programming for task that finds the neighbor of a given pixel x in image Dthat can formula as:
The formula shown pixels y which satisfy the distance to pixel x is 1, then they are neighbor of pixel x. This is my matlab code. However, it still takes long time to find. Could you suggest a faster way to do it. Thank you so much
%-- Find the neighborhood of one pixel
% x is pixel coordinate
% nrow, ncol is size of image
function N = find_neighbor(x,nrow,ncol)
i = x(1);
j = x(2);
I1 = i+1;
if (I1 > nrow)
I1 = nrow;
end
I2 = i-1;
if (I2 < 1)
I2 = 1;
end
J1 = j+1;
if (J1 > ncol)
J1 = ncol;
end
J2 = j-1;
if (J2 < 1)
J2 = 1;
end
N = [I1, I2, i, i; j, j, J1, J2];
For example: ncol=128; nrow=128; x =[30;110] then output
N =31 29 30 30; 110 110 111 109]
For calling the function in loop
x=[30 31 32 33; 110 123 122 124]
for i=1:length(x)
N = find_neighbor(x(:,i),nrow,ncol);
end
Here's a vectorized approach using bsxfun:
% define four neighbors as coordinate differences
d = [-1 0 ; 1 0 ; 0 -1 ; 0 1]';
% add to pixel coordinates
N = bsxfun(#plus, x, permute(d, [1 3 2]));
% make one long list for the neighbors of all pixels together
N = reshape(N, 2, []);
% identify out-of-bounds coordinates
ind = (N(1, :) < 1) | (N(1, :) > nrow) | (N(2, :) < 1) | (N(2, :) > ncol);
% and remove those "neighbors"
N(:, ind) = [];
The permute is there to move the "dimension" of four different neighbors into the 3rd array index. This way, using bsxfun, we get the combination of every pair of original pixel coordinates with every pair of relative neighbor coordinates. The out-of-bounds check assumes that nrow belongs to the first coordinate and ncol to the second coordinate.
With
ncol=128;
nrow=128;
x = [30 31 32 33; 110 123 122 124];
the result is
N =
29 30 31 32 31 32 33 34 30 31 32 33 30 31 32 33
110 123 122 124 110 123 122 124 109 122 121 123 111 124 123 125
Different neighbors of different pixels can end up to be the same pixel, so there can be duplicates in the list. If you only want each resulting pixel once, use
% remove duplicates?
N = unique(N', 'rows')';
to get
N =
29 30 30 30 31 31 31 32 32 32 33 33 33 34
110 109 111 123 110 122 124 121 123 124 122 123 125 124
Matlab's performance is horrible when calling small functions many time. The Matlab approach is to do vectorize as much as possible. A vectorized version of your code:
function N = find_neighbor(x,nrow,ncol)
N = [min(x(1,:)+1,nrow), max(x(1,:)-1,1), x(1,:), x(1,:); x(2,:), x(2,:),min(x(2,:)+1,ncol), max(x(2,:)-1,1)];
end
and usage
x=[30 31 32 33; 110 123 122 124]
N = find_neighbor(x,nrow,ncol);
BTW, for pixels on the border , your solution always gives 4 neighbors. This is wrong. the neighbors of (1,1) for examples should be only (2,1) and (1,2), while you add two extra (1,1).
The solution to this is quite simple - delete all neighbors that are outside the image
function N = find_neighbor(x,nrow,ncol)
N = [x(1,:)+1, x(1,:)-1, x(1,:), x(1,:); x(2,:), x(2,:),x(2,:)+1, x(2,:)-1];
N(:,N(1,:)<1 | N(1,:)> nrow | N(2,:)<1 | N(2,:)>ncol)=[];
end

strange result with JPEG compression

I want to implement the JPEG compression by using MATLAB. Well at the point where the symbols' probabilities (Huffman coding) are calculated i can see some NEGATIVE values. I am sure that this is not correct!!! if someone can give some help or directions i would really appreciate it. Thank all of you in advance. I use MATLAB R2012b. Here is the code:
clc;
clear all;
a = imread('test.png');
b = rgb2gray(a);
b = imresize(b, [256 256]);
b = double(b);
final = zeros(256, 256);
mask = [1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0];
qv1 = [ 16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99];
t = dctmtx(8);
DCT2D = #(block_struct) t*block_struct.data*t';
msk = #(block_struct) mask.*block_struct.data;
for row = 1:8:256
for column = 1:8:256
x = (b(row:row+7, column:column+7));
xf = blockproc(x, [8 8], DCT2D);
xf1 = blockproc(xf, [8 8], msk);
xf1 = round(xf1./qv1).*qv1;
final(row:row+7, column:column+7) = xf1;
end
end
[symbols,p] = hist(final,unique(final));
bar(p, symbols);
p = p/sum(p); %NEGATIVE VALUES????
I think you might have the outputs of hist (symbols and p) swapped. The probability should be calculated from the bin counts, which is the first output of hist.
[nelements,centers] = hist(data,xvalues) returns an additional row vector, centers, indicating the location of each bin center on the x-axis. To plot the histogram, you can use bar(centers,nelements).
In other words, instead of your current line,
[symbols,p] = hist(final,unique(final));
just use,
[p,symbols] = hist(final,unique(final));
Also, final is a matrix rather than a vector, so nelements will be a matrix:
If data is a matrix, then a histogram is created separately for each column. Each histogram plot is displayed on the same figure with a different color.

Remove the minimum values per each column of a Matrix

If I had a matrix A such as:
63 55 85 21 71
80 65 85 48 53
55 60 93 71 66
21 65 40 33 21
61 90 80 48 50
... and so on how would I find the minimum values of each column and remove those numbers from the matrix completely, meaning essentially I would have one less row overall.
I though about using:
[C,I] = min(A);
A(I) = [];
but that wouldn't remove the necessary numbers, and also reshape would not work either. I would like for this to work with an arbitrary number of rows and columns.
A = [
63 55 85 21 71
80 65 85 48 53
55 60 93 71 66
21 65 40 33 21
61 90 80 48 50
];
B = zeros( size(A,1)-1, size(A,2));
for i=1:size(A,2)
x = A(:,i);
maxIndex = find(x==min(x(:)),1,'first');
x(maxIndex) = [];
B(:,i) = x;
end
disp(B);
Another vectorized solution:
M = mat2cell(A,5,ones(1,size(A,2)));
z = cellfun(#RemoveMin,M);
B = cell2mat(z);
disp(B);
function x = RemoveMin(x)
minIndex = find(x==min(x(:)),1,'first');
x(minIndex) = [];
x = {x};
end
Another solution:
[~,I] = min(A);
indexes = sub2ind(size(A),I,1:size(A,2));
B = A;
B(indexes) = [];
out = reshape(B,size(A)-[1 0]);
disp(out);
Personally I prefer the first because:
For loops aren't evil - many times they are actually faster (By using JIT optimizer)
The algorithm is clearer to the developer who reads your code.
But of course, its up to you.
Your original approach works if you convert the row indices resulting from min into linear indices:
[m, n] = size(A);
[~, row] = min(A,[],1);
A(row + (0:n-1)*m) = [];
A = reshape(A, m-1, n);

MATLAB: create new matrix from existing matrix according to specifications

Assume we have the following data:
H_T = [36 66 21 65 52 67 73; 31 23 19 33 36 39 42]
P = [40 38 39 40 35 32 37]
Using MATLAB 7.0, I want to create three new matrices that have the following properties:
The matrix H (the first part in matrix H_T) will be divided to 3 intervals:
Matrix 1: the 1st interval contains the H values between 20 to 40
Matrix 2: the 2nd interval contains the H values between 40 to 60
Matrix 3: the 3rd interval contains the H values between 60 to 80
The important thing is that the corresponding T and P will also be included in their new matrices meaning that H will control the new matrices depending on the specifications defined above.
So, the resultant matrices will be:
H_T_1 = [36 21; 31 19]
P_1 = [40 39]
H_T_2 = [52; 36]
P_2 = [35]
H_T_3 = [66 65 67 73; 23 33 39 42]
P_3 = [38 40 32 37]
Actually, this is a simple example and it is easy by looking to create the new matrices depending on the specifications, BUT in my values I have thousands of numbers which makes it very difficult to do that.
Here's a quick solution
[~,bins] = histc(H_T(1,:), [20 40 60 80]);
outHT = cell(3,1);
outP = cell(3,1);
for i=1:3
idx = (bins == i);
outHT{i} = H_T(:,idx);
outP{i} = P(idx);
end
then you access the matrices as:
>> outHT{3}
ans =
66 65 67 73
23 33 39 42
>> outP{3}
ans =
38 40 32 37