Can DFS be used for star pattern recognition? - neural-network

I am studying Artificial Intelligence. I was taking a lecture on Neural Networks and as an example problem my teacher took the example of counting all the stars in observable universe. The discussion continued and stopped on pattern matching. Since time was up he asked us to try and think about solving this problem using all the algorithms that we have previously studied, which include DFS, BFS, A*, Greedy, Simulated Annealing and Genetic Algorithm.
Now, I have no idea what he meant by that. I mean how is it even possible? Can anyone guide me in the right direction?

I think DFS can't be used for Pattern Recognition because pattern recognition need learning process and DFS can't do learning process. You need machine learning technique to do learning process.
among the available list, you can use Genetic Algorithm or Neural Network.
The simplest Pattern Recognition i ever done is Character Recognition with ANN Learning Vector Quantization (LVQ).LVQ

Related

Deep learning network for classification

I know this is a generic question but I would like some feedback.
So, I have an image classification task, which I am trying to solve with neural networks. I already have my feature vectors.
There are 3 salient feature vectors (point coordinates in 2d space), each of which can belong to three classes.
These classes are not the same among these 3 features. (for instance, one could be "up down straight" the other "round square triangular").
These are combined in an overall classification task in 6 output classes (not 27 as the number of combinations would maybe imply).
So, what's the question:
Are deep learning networks / convolutional networks a good solution to this? Or would you prefer something else? (I have just began learning about these and cant make up my mind yet, so I would appreciate some feedback from more experienced users)
As I understood, your problem is not so complicated to implement deep learning. Because you have low dimensional features and few class outputs. Deep learning is mostly for highly nonlinear and large-size classification problems. I suggest you you to use AdaBoost or SVM classifier for this kind of simple classification tasks. Matlab has great tools for above techniques.

Neuroph Vs Encog

I have decided to use a feed-forward NN with back-propagation training for my OCR application for Handwritten text and the input layer is going to be with 32*32 (1024) neurones and at least 8-12 out put neurones.
I found Neuroph easy to use by reading some articles at the same time Encog is few times better in performance. Considering the parameters in my scenario which API is the most suitable one. And I appreciate if u can comment on the number of input nodes i have taken, is it too large value (Although it is out of the topic)
First my disclaimer, I am one of the main developers on the Encog project. This means I am more familiar with Encog that Neuroph and perhaps biased towards it. In my opinion, the relative strengths of each are as follows. Encog supports quite a few interchangeable machine learning methods and training methods. Neuroph is VERY focused on neural networks and you can express a connection between just about anything. So if you are going to create very custom/non-standard (research) neural networks of different typologies than the typical Elman/Jordan, NEAT, HyperNEAT, Feedforward type networks, then Neuroph will fit the bill nicely.

Which multiplication and addition factor to use when doing adaptive learning rate in neural networks?

I am new to neural networks and, to get grip on the matter, I have implemented a basic feed-forward MLP which I currently train through back-propagation. I am aware that there are more sophisticated and better ways to do that, but in Introduction to Machine Learning they suggest that with one or two tricks, basic gradient descent can be effective for learning from real world data. One of the tricks is adaptive learning rate.
The idea is to increase the learning rate by a constant value a when the error gets smaller, and decrease it by a fraction b of the learning rate when the error gets larger. So basically the learning rate change is determined by:
+(a)
if we're learning in the right direction, and
-(b * <learning rate>)
if we're ruining our learning. However, on the above book there's no advice on how to set these parameters. I wouldn't expect a precise suggestion since parameter tuning is a whole topic on its own, but just a hint at least on their order of magnitude. Any ideas?
Thank you,
Tunnuz
I haven't looked at neural networks for the longest time (10 years+) but after I saw your question I thought I would have a quick scout about. I kept seeing the same figures all over the internet in relation to increase(a) and decrease(b) factor (1.2 & 0.5 respectively).
I have managed to track these values down to Martin Riedmiller and Heinrich Braun's RPROP algorithm (1992). Riedmiller and Braun are quite specific about sensible parameters to choose.
See: RPROP: A Fast Adaptive Learning Algorithm
I hope this helps.

Are neural networks really abandonware?

I am planning to use neural networks for approximating a value function in a reinforcement learning algorithm. I want to do that to introduce some generalization and flexibility on how I represent states and actions.
Now, it looks to me that neural networks are the right tool to do that, however I have limited visibility here since I am not an AI expert. In particular, it seems that neural networks are being replaced by other technologies these days, e.g. support vector machines, but I am unsure if this is a fashion matter or if there is some real limitation in neural networks that could doom my approach. Do you have any suggestion?
Thanks,
Tunnuz
It's true that neural networks are no longer in vogue, as they once were, but they're hardly dead. The general reason for them falling from favor was the rise of the Support Vector Machine, because they converge globally and require fewer parameter specifications.
However, SVMs are very burdensome to implement and don't naturally generalize to reinforcement learning like ANNs do (SVMs are primarily used for offline decision problems).
I'd suggest you stick to ANNs if your task seems suitable to one, as within the realm of reinforcement learning, ANNs are still at the forefront in performance.
Here's a great place to start; just check out the section titled "Temporal Difference Learning" as that's the standard way ANNs solve reinforcement learning problems.
One caveat though: the recent trend in machine learning is to use many diverse learning agents together via bagging or boosting. While I haven't seen this as much in reinforcement learning, I'm sure employing this strategy would still be much more powerful than an ANN alone. But unless you really need world class performance (this is what won the netflix competition), I'd steer clear of this extremely complex technique.
It seems to me that neural networks are kind of making a comeback. For example, this year there were a bunch of papers at ICML 2011 on neural networks. I would definitely not consider them abandonware. That being said, I would not use them for reinforcement learning.
Neural networks are a decent general way of approximating complex functions, but they are rarely the best choice for any specific learning task. They are difficult to design, slow to converge, and get stuck in local minima.
If you have no experience with neural networks, then you might be happier to you use a more straightforward method of generalizing RL, such as coarse coding.
Theoretically it has been proved that Neural Networks can approximate any function (given an infinite number of hidden neurons and the necessary inputs), so no I don't think the neural networks will ever be abandonwares.
SVM are great, but they cannot be used for all applications while Neural Networks can be used for any purpose.
Using neural networks in combination with reinforcement learning is standard and well-known, but be careful to plot and debug your neural network's convergence to check that it works correctly as neural networks are notoriously known to be hard to implement and learn correctly.
Be also very careful about the representation of the problem you give to your neural network (ie: the inputs nodes): could you, or could an expert, solve the problem given what you give as inputs to your net? Very often, people implementing neural networks don't give enough informations for the neural net to reason, this is not so uncommon, so be careful with that.

Has anyone tried to compile code into neural network and evolve it?

Do you know if anyone has tried to compile high level programming languages (java, c#, etc') into a recurrent neural network and then evolve them?
I mean that the whole process including memory usage is stored in a graph of a neural net, and I'm talking about complex programs (thinking about natural language processing problems).
When I say neural net I mean a directed weighted graphs that spreads activation, and the nodes are functions of their inputs (linear, sigmoid and multiplicative to keep it simple).
Furthermore, is that what people mean in genetic programming or is there a difference?
Neural networks are not particularly well suited for evolving programs; their strength tends to be in classification. If anyone has tried, I haven't heard about it (which considering I barely touch neural networks is not a surprise, but I am active in the general AI field at the moment).
The main reason why neural networks aren't useful for generating programs is that they basically represent a mathematical equation (numeric, rather than functional). Given some numeric input, you get a numeric output. It is difficult to interpret these in the context of a program any more complicated than simple arithmetic.
Genetic Programming traditionally uses Lisp, which is a pure functional language, and often programs are often shown as tree diagrams (which occasionally look similar to some neural network diagrams - is this the source of your confusion?). The programs are evolved by exchanging entire branches of a tree (a function and all its parameters) between programs or regenerating an entire branch randomly.
There are certainly a lot of good (and a lot of bad) references on both of these topics out there - I refrain from listing them because it isn't clear what you are actually interested in. Wikipedia covers each of these techniques, and is a good starting point.
Genetic programming is very different from Neural networks. What you are suggesting is more along the lines of genetic programming - making small random changes to a program, possibly "breeding" successful programs. It is not easy, and I have my doubts that it can be done successfully across a large program.
You may have more luck extracting a small but critical part of your program, one which has a few particular "aspects" (such as parameter values) that you can try to evolve.
Google is your friend.
Some sophisticated anti-virus programs as well as sophisticated malware use formal grammar and genetic operators to evolve against each other using neural networks.
Here is an example paper on the topic: http://nexginrc.org/nexginrcAdmin/PublicationsFiles/raid09-sadia.pdf
Sources: A class on Artificial Intelligence I took a couple years ago.
With regards to your main question, no one has ever tried that on programming languages to the best of my knowledge, but there is some research in the field of evolutionary computation that could be compared to something like that (but it's obviously a far-fetched comparison). As a matter of possible interest, I asked a similar question about sel-improving compilers a while ago.
For a difference between genetic algorithms and genetic programming, have a look at this question.
Neural networks have nothing to do with genetic algorithms or genetic programming, but you can obviously use either to evolve neural nets (as any other thing for that matters).
You could have look at genetic-programming.org where they claim that they have found some near human competitive results produced by genetic programming.
I have not heard of self-evolving and self-imrpvoing programs before. They may exist as special research tools like genetic-programming.org have but nothing solid for generic use. And even if they exist they are very limited to special purpose operations like malware detection as Alain mentioned.