What are the consequences of not ending a database transaction? - postgresql

I have found a bug in my application code where I have started a transaction, but never commit or do a rollback. The connection is used periodically, just reading some data every 10s or so. In the pg_stat_activity table, its state is reported as "idle in transaction", and its backend_start time is over a week ago.
What is the impact on the database of this? Does it cause additional CPU and RAM usage? Will it impact other connections? How long can it persist in this state?
I'm using postgresql 9.1 and 9.4.

Since you only SELECT, the impact is limited. It is more severe for any write operations, where the changes are not visible to any other transaction until committed - and lost if never committed.
It does cost some RAM and permanently occupies one of your allowed connections (which may or may not matter).
One of the more severe consequences of very long running transactions: It blocks VACUUM from doing it's job, since there is still an old transaction that can see old rows. The system will start bloating.
In particular, SELECT acquires an ACCESS SHARE lock (the least blocking of all) on all referenced tables. This does not interfere with other DML commands like INSERT, UPDATE or DELETE, but it will block DDL commands as well as TRUNCATE or VACUUM (including autovacuum jobs). See "Table-level Locks" in the manual.
It can also interfere with various replication solutions and lead to transaction ID wraparound in the long run if it stays open long enough / you burn enough XIDs fast enough. More about that in the manual on "Routine Vacuuming".
Blocking effects can mushroom if other transactions are blocked from committing and those have acquired locks of their own. Etc.
You can keep transactions open (almost) indefinitely - until the connection is closed (which also happens when the server is restarted, obviously.)
But never leave transactions open longer than needed.

There are two major impacts to the system.
The tables that have been used in those transactions:
are not vacuumed which means they are not "cleaned up" and their statistics aren't updated which might lead to bad (=slow) execution plans
cannot be changed using ALTER TABLE

Related

Sudden Increase in row exclusive locks and connection exhaustion in PostgreSQL

I have a scenario that repeats itself every few hours. In every few hours, there is a sudden increase in row exclusive locks in PostgreSQL DB. In Meantime there seems that some queries are not responded in time and causes connection exhaustion to happen that PostgreSQL does not accept new clients anymore. After 2-3 minutes locks and connection numbers drops and the system comes back to normal state again.
I wonder if auto vacuum can be the root cause of this? I see analyze and vacuum (NOT FULL VACCUM) take about 20 seconds to complete on one of the tables. I have INSERT,SELECT,UPDATE and DELETE operations going on from my application and I don't have DDL commands (ALTER TABLE, DROP TABLE, CREATE INDEX, ...) going on. Can auto vacuum procedure conflict with queries from my application and cause them to wait until vacuum has completed? Or it's all the applications and my bad design fault? I should say one of my tables has a field of type jsonb that keeps relatively large data for each row (10 MB roughly).
I have attached an image from monitoring application that shows the sudden increase in row exclusive locks.
ROW EXCLUSIVE locks are perfectly harmless; they are taken on tables against which DML statements run. Your graph reveals nothing. You should set log_lock_waits = on and log_min_duration_statement to a reasonable value. Perhaps you can spot something in the logs. Also, watch out for long running transactions.

RDS Postgres "canceling statement due to conflict with recovery" [duplicate]

I'm getting the following error when running a query on a PostgreSQL db in standby mode. The query that causes the error works fine for 1 month but when you query for more than 1 month an error results.
ERROR: canceling statement due to conflict with recovery
Detail: User query might have needed to see row versions that must be removed
Any suggestions on how to resolve? Thanks
No need to touch hot_standby_feedback. As others have mentioned, setting it to on can bloat master. Imagine opening transaction on a slave and not closing it.
Instead, set max_standby_archive_delay and max_standby_streaming_delay to some sane value:
# /etc/postgresql/10/main/postgresql.conf on a slave
max_standby_archive_delay = 900s
max_standby_streaming_delay = 900s
This way queries on slaves with a duration less than 900 seconds won't be cancelled. If your workload requires longer queries, just set these options to a higher value.
Running queries on hot-standby server is somewhat tricky — it can fail, because during querying some needed rows might be updated or deleted on primary. As a primary does not know that a query is started on secondary it thinks it can clean up (vacuum) old versions of its rows. Then secondary has to replay this cleanup, and has to forcibly cancel all queries which can use these rows.
Longer queries will be canceled more often.
You can work around this by starting a repeatable read transaction on primary which does a dummy query and then sits idle while a real query is run on secondary. Its presence will prevent vacuuming of old row versions on primary.
More on this subject and other workarounds are explained in Hot Standby — Handling Query Conflicts section in documentation.
There's no need to start idle transactions on the master. In postgresql-9.1 the
most direct way to solve this problem is by setting
hot_standby_feedback = on
This will make the master aware of long-running queries. From the docs:
The first option is to set the parameter hot_standby_feedback, which prevents
VACUUM from removing recently-dead rows and so cleanup conflicts do not occur.
Why isn't this the default? This parameter was added after the initial
implementation and it's the only way that a standby can affect a master.
As stated here about hot_standby_feedback = on :
Well, the disadvantage of it is that the standby can bloat the master,
which might be surprising to some people, too
And here:
With what setting of max_standby_streaming_delay? I would rather
default that to -1 than default hot_standby_feedback on. That way what
you do on the standby only affects the standby
So I added
max_standby_streaming_delay = -1
And no more pg_dump error for us, nor master bloat :)
For AWS RDS instance, check http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html
The table data on the hot standby slave server is modified while a long running query is running. A solution (PostgreSQL 9.1+) to make sure the table data is not modified is to suspend the replication and resume after the query:
select pg_xlog_replay_pause(); -- suspend
select * from foo; -- your query
select pg_xlog_replay_resume(); --resume
I'm going to add some updated info and references to #max-malysh's excellent answer above.
In short, if you do something on the master, it needs to be replicated on the slave. Postgres uses WAL records for this, which are sent after every logged action on the master to the slave. The slave then executes the action and the two are again in sync. In one of several scenarios, you can be in conflict on the slave with what's coming in from the master in a WAL action. In most of them, there's a transaction happening on the slave which conflicts with what the WAL action wants to change. In that case, you have two options:
Delay the application of the WAL action for a bit, allowing the slave to finish its conflicting transaction, then apply the action.
Cancel the conflicting query on the slave.
We're concerned with #1, and two values:
max_standby_archive_delay - this is the delay used after a long disconnection between the master and slave, when the data is being read from a WAL archive, which is not current data.
max_standby_streaming_delay - delay used for cancelling queries when WAL entries are received via streaming replication.
Generally, if your server is meant for high availability replication, you want to keep these numbers short. The default setting of 30000 (milliseconds if no units given) is sufficient for this. If, however, you want to set up something like an archive, reporting- or read-replica that might have very long-running queries, then you'll want to set this to something higher to avoid cancelled queries. The recommended 900s setting above seems like a good starting point. I disagree with the official docs on setting an infinite value -1 as being a good idea--that could mask some buggy code and cause lots of issues.
The one caveat about long-running queries and setting these values higher is that other queries running on the slave in parallel with the long-running one which is causing the WAL action to be delayed will see old data until the long query has completed. Developers will need to understand this and serialize queries which shouldn't run simultaneously.
For the full explanation of how max_standby_archive_delay and max_standby_streaming_delay work and why, go here.
It might be too late for the answer but we face the same kind of issue on the production.
Earlier we have only one RDS and as the number of users increases on the app side, we decided to add Read Replica for it. Read replica works properly on the staging but once we moved to the production we start getting the same error.
So we solve this by enabling hot_standby_feedback property in the Postgres properties.
We referred the following link
https://aws.amazon.com/blogs/database/best-practices-for-amazon-rds-postgresql-replication/
I hope it will help.
Likewise, here's a 2nd caveat to #Artif3x elaboration of #max-malysh's excellent answer, both above.
With any delayed application of transactions from the master the follower(s) will have an older, stale view of the data. Therefore while providing time for the query on the follower to finish by setting max_standby_archive_delay and max_standby_streaming_delay makes sense, keep both of these caveats in mind:
the value of the follower as a standby / backup diminishes
any other queries running on the follower may return stale data.
If the value of the follower for backup ends up being too much in conflict with hosting queries, one solution would be multiple followers, each optimized for one or the other.
Also, note that several queries in a row can cause the application of wal entries to keep being delayed. So when choosing the new values, it’s not just the time for a single query, but a moving window that starts whenever a conflicting query starts, and ends when the wal entry is finally applied.

Is ROLLBACK TO SAVEPOINT better performing than ROLLBACK TRANSACTION?

I have a script that performs a bunch of updates on a moderately large (approximately 6 million rows) table, based on data read from a file.
It currently begins and then commits a transaction for each row it updates and I wanted to improve its performance somehow. I wonder if starting a single transaction at the beginning of the script's run and then rollbacking to individual savepoints in case any validation error occurs would actually result in a performance increase.
I looked online but haven't had much luck finding any documentation or benchmarks.
COMMIT is mostly an I/O problem, because the transaction log (WAL) has to be synchronized to disk.
So using subtransactions (savepoints) will verylikely boost performance. But beware that using more than 64 subtransactions per transaction will again hurt performance if you have concurrent transactions.
If you can live with losing some committed transactions in the event of a database server crash (which is rare), you could simply set synchronous_commit to off and stick with many small transactions.
Another, more complicated method is to process the rows in batches without using subtransactions and repeating the whole batch in case of a problem.
Having a single transaction with only 1 COMMIT should be faster than having multiple single row update transactions because each COMMIT must synchronize WAL writing to disk. But how really faster it is in a given environment depends a lot of the environment (number of transactions, table structure, index structure, UPDATE statement, PostgreSQL configuration, system configuration etc.): only you can benchmark in your environment.

PostgreSQL limits itself to a single core CPU usage (debugging lock issue?)

Update after some research, it seems this question was incorrect - the 100% was representing all cores, not a single core, making the whole question moot. My sincere apologies to the community.
On PostgreSQL 10, PostGIS 2.5.2, without any data modifications (SELECT queries only), I have 40 identical GIS queries running in parallel (with different params), each taking ~20-500ms. Server has lots of RAM, NVME SSDs.
The CPU usage consistently shows 100% of a single core, implying that all queries are stuck waiting for something that cannot execute in parallel, but I am not sure how to find it.
Examining pg_stat_activity multiple times shows that all queries are active, and their wait_event could be one of these cases:
wait_event is NULL for all
a few ClientRead and lock_manager, NULL everything else
a lot of lock_manager, and a few ClientRead and NULLs.
Is there a way to figure out what may be causing this?
That is surprising, as reading queries never lock on anything short of an ACCESS EXCLUSIVE lock that is required by operations like DROP TABLE, TRUNCATE, ALTER TABLE and similar statements.
Perhaps the locks are “light-weight locks” on internal PostgreSQL data structures, which are usually only held for a very short time. I don't know what in a PostGIS query could have high contention on such internal locks, but then you didn't show the statement or its execution plan, nor did you show the exact lock events.
If you have several concurrent queries that each take a long time like 500ms, the definitely should be running in parallel.
Apart from the possibilities of some internal lock contention, I can think of two explanations:
Most of the queries are short enough that a single core suffices to process all the queries. Each connection spends most of its time waiting for the client.
The system is I/O bound, so that most of the CPUs just twiddle their thumbs. That would be indicated by a CPU iowait% of 10 or more.

What resources do subtransaction IDs consume?

The PostgreSQL wiki advises an approach to implementing UPSERT that uses a retry-loop. Implicit in this solution is the use of "subtransaction IDs". On the wiki article there is the following warning:
The correct solution is slow and clumsy to use, and is unsuitable for significant amounts of data. It also potentially burns through a lot of subtransaction IDs - avoiding burning XIDs is an explicit goal of the current "native UPSERT in PostgreSQL" effort.
What is the consequence of using "a lot of subtransaction IDs"? I don't really know what a subtransaction ID is - is this just a way of numbering nested transactions, and is the implication that these numbers might run out?
The resource is the 32 bits XID transaction counter itself, which is used by the engine to know if the version of a row in a table is associated to an "old" transaction (committed or rolled back) or a not-yet-committed transaction, and if it's visible or not from any given transaction.
Increasing XIDs at a super-high rate creates or increases the risk of getting a transaction ID wraparound issue. The worst case being that this issue escalates into a database self-shutdown to avoid data inconsistencies.
What avoids the transaction ID wraparound is routine vacuuming. This is detailed in the doc under Preventing Transaction ID Wraparound Failures.
But autovacuum is a background task which is meant to not get in the way of the foreground activity. Among other things, it cancels itself instead of locking out other queries. At times, it can lag a lot behind.
We can imagine a worst case where the foreground database activity increases XID values so fast that autovacuum just doesn't have the time to freeze the rows with the "old XIDs" before these XIDs values are claimed by a new transaction or subtransaction, a situation which PostgreSQL couldn't deal with.
It might also be that those foreground transactions stay uncommitted when this is going on, so even an aggressive vaccum couldn't do anything about it.
That's why programmers should be cautious about techniques that make this event more likely, like opening/closing subtransactions in huge loops.
The range is about 2 billion transactions, but this is the kind of limit that was unreachable when the system was designed, but which will become problematic as our hardware capabilities and what we're asking from our databases are ever-increasing.