what is the difference between kernel and system software? - operating-system

I really quite confused with the kernel and system software are they same, metaphors, or different.

The kernel is one component of the operating system which connects the other components to each other and to the hardware. The Source of All Truth and Knowledge has extensive articles which explain how all the bits work, as a quick Google search would have shown you.

Related

How would I go about making device drivers for my own kernel?

I am making my own operating system for fun. I'm reading and learning a lot from the Intel's 64bit and IA-32 architecture manual which is helpful for developing an operating system.
But one thing that I just can't find anywhere is how to make device drivers. The only posts I can find about device drivers on the internet are about making Linux or Windows drivers. But it's different from making drivers for my own kernel.
Can someone experienced please point me into the right direction, enlighten me where I can learn making my own device drivers for my own operating system?
For a start, simple keyboard or mouse drivers are enough, but I will appreciate anything, be it simple keyboard drivers, or complex network drivers
TL;DR: I need a solid source explaining how to make device drivers for my own kernel. I can't find any and hope that someone have stumbled upon one
(I'm not asking "how to make drivers?", but rather asking "can I have links to books/posts about making drivers?")
All a kernel-mode device driver is, is code executing under the kernel, which is not treated as the "main" kernel image itself - consider it as an "extension" to the main kernel image. On Windows for example, kernel-mode device drivers (which tend to use the *.sys file extension, which is also belonging to the Portable Executable (PE) Format) are treated as modules to ntoskrnl.exe (which is the main kernel image on Windows).
The idea is that your kernel-mode device drivers will have access to routines exported by your main kernel image (e.g. if you want to implement mechanisms like kernel-mode callbacks). You could start by making your own simple format for your kernel to understand, and then you can start implementing export support appropriate for your own file format (for the main kernel image) and import support (for the other kernel-mode software to make use of the APIs which it should have access to, provided by the main kernel image).
You'll have a lot of work to do if you want a good design implementation.

What is the best way to start programming with Real Time Linux?

Although I have implemented many projects in C, I am completely new to operating systems. I tried real time linux on Discovery board (STM32) and got the correct results for blinking LED but I didn't really understand the whole process since I just followed the steps and could not find whole description for each step on the internet.
I want to implement scheduling on real time linux. What is the best way to start? Any sites, books, tutorials available?
Complete RTLinux process description will be appreciated.
Thanks in adv.
The transition from "bare metal" to OS based programming is something that I experienced in reverse. I started out a complete software guy, totally into the OS side of things and over time I have moved to the opposite of that (even designing circuits in VHDL!). My advice would be to start simple. Linux is pretty complex, and everywhere you look there are many layers of things all working together to deliver the final product. If you are dead set on a real time linux extension, I'd be happy to suggest https://xenomai.org/ which is a real time extension for linux.
However, to more specifically address your question about implementing scheduling in Linux, you can, but it will be a large amount of work and can be very complicated. The OS uses a completely fair scheduling process ( http://en.wikipedia.org/wiki/Completely_Fair_Scheduler ) and whenever you spin up a thread, it simply gets added to the list to run. This can differ slightly if you implement your code in kernel space as a driver, rely on hardware interrupts, etc., but in general, this is how Linux works. Real time generally means that it has the ability to assign threads one of several different priorities and utilize thread preemption fully at any given time which are concepts that aren't really a part of vanilla Linux. It has some notion of this, but it has limitations that can cause problems when you are looking for real time behavior from Linux.
What may be helpful to you is an RTOS. If you are looking for a full on Real Time Operating System, check out FreeRTOS http://www.freertos.org/ . It has a large community and supports a lot of different devices out of the box with a large amount of example code. They even support your specific board with an example package, so you can give it a shot with nothing to lose! http://www.freertos.org/FreeRTOS-for-Cortex-M3-STM32-STM32F100-Discovery.html . It gives you access to many OS ish constructs like network APIs, memory management, and threading without the overhead and latency of a huge OS. With an RTOS, you create tasks and assign them priorities so you become the scheduler and are no longer at the mercy of the OS. You run the OS, not the OS runs you (if that makes sense). Plus, the constructs offered within an RTOS will feel much like bare metal code and thus will be much easier to follow, understand, and fully learn. It is a more simple world to learn the base building blocks of a full blown OS such as Linux or Windows. If this option sounds good, I would suggest looking through the supported devices on FreeRTOS website and picking one you would like to experiment with and then go for it. I would highly recommend this as a way to learn about scheduling and OS constructs in general as it is as simple as you can get and open source. Once you have the basics of an RTOS down, buying a book about Linux specifically wouldn't be a bad idea. Although there are many free resources on the web related to learning about Linux, they are commonly contradictory, and can be misleading. Pile on learning Linux specific knowledge along with OS in general, and it can feel overwhelming. Starting simpler will help keep you from getting burnt out and minimize the amount of time you spend feeling lost. Linux is definitely a learning process, but like with any learning process, start simple, keep your ultimate goal in mind, make a plan, and take small, manageable steps along that plan until you look up and find yourself exactly where you want to be. Then go tackle the next mountain!
The real-time Linux landscape is quite confusing. 99.99% of the information out there is just plain obsolete.
First, there are lots of "microkernels" that run Linux as one task. (Such as the defunct RTLinux). The problem is that you must write your real-time task to a different API, and can't depend on anything in Linux, because Linux will be frozen in the background while your task runs. So unless your task is dead-simple ("stop the motors when I press this button"), this approach will cause more pain than gain.
Next, there is the realtime Linux patch set. This hasn't been doing so well. because of the next item:
Lastly, the current Linux kernel has gotten rid of the problems that caused people to need realtime in the past. You can even turn off Linux on one of your processors to have full control of the CPU. See also this paper.
To answer your question: I see two different paths you could take:
1) Start with a normal 3.xx Linux kernel and explore the various APIs and realtime techniques (i.e. realtime priorities, memory pinning, etc.) This can get you "close enough" for 99% of what people want "realtime" for. If it's good enough for high frequency trading, it's probably good enough for you.
2) If you have a hard realtime requirement and you are worried that Linux won't cut it, then (as Nick mentioned above), just go buy a processor and write your realtime code with no OS. By splitting up your "realtime" and "non-realtime" code onto different CPUs, you will make the whole system simpler and much more robust.
If you want to learn real-time operating systems then I suggest that you get an FPGA, for example the Altera DE2, and experiment with your own operating system and ucos. You can read a good text about embedded RTOS here.
You could also get a Linux Raspberry and write your own operating system for that.

Linux kernel device driver programming [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 8 years ago.
Improve this question
I want to learn linux kernel device driver programming. So can anyone please post good tutorials pages or links here. I am new to linux kernel environment. I have searched for it but I don't know how to start and which one to read for easy understanding basics. Thanks in advance.
Depends on your current skills. If you're really new to Linux, perhaps you should start with user space system programming with Advanced Linux Programming. You'll get good knowledge of Unix system calls and other concepts such as signals, processes/threads and so on with this free resource. This is a must (understanding the user space API) if you're developing on the kernel side since the role of a kernel is providing services to users in a secure way.
Otherwise one often cited book is Linux Device Drivers, Third Edition (LDD3). Keep in mind that this edition was written at the time of Linux 2.6.10 and some things changed since then. This article shows the differences as 2.6 evolved (until 2.6.31, that is, so not very useful). I should mention martinezjavier/ldd3, which contains example drivers of LDD3 updated for more recent kernels (thanks to 42n4 for pointing that out).
Another interesting book that's not as often cited is Essential Linux Device Drivers. You won't find a free version of this one, but it still features an interesting approach. What I like about this one is it covers lots of different device types and is up-to-date as of 2.6.24, which is a bit better than LDD.
Finally, one great book about the kernel itself (not specifically for drivers) is Understanding the Linux Kernel, 3rd Edition. This covers in-depth kernel facilities and internal mechanisms. It's up-to-date as of 2.6.11.
As for online tutorials, I found this post on Pete's Blog is a really great example. Not only does it show how to create a character device (the most easy kernel driver type, i.e. the one you should start with), it uses modern Linux kernel features in an easy to understand fashion, including:
use of udev
use of a kernel data structure (FIFO)
use of kernel synchronization (mutex)
use of Sysfs with custom attributes
module options for insmod
Plus: it's aimed at Linux 3.0, which means it's more up-to-date compared to other resources.
You might also like this post about how to create Sysfs entries manually, although the Linux device model will take care of registering your device as a Sysfs entry if you don't need additional nodes or attributes.
Edit: I should add that the best way to learn real Linux device driver programming is to look at actual drivers. There are thousands of drivers in drivers. Start reading and understanding the concept of simple ones like drivers/leds and you will see how rewarding this is.
The site with very important links:
http://elinux.org/Device_drivers
Great tutorial with real examples (ends with an usbpen formatted with our own file system - search for author further articles):
http://www.linuxforu.com/tag/linux-device-drivers-series/
http://sysplay.in/index.php?pagefile=lfy_articles
Source code of famous LDD3 book ported to newest kernels:
https://github.com/martinezjavier/ldd3/
Videos:
https://www.youtube.com/playlist?list=PL16941B715F5507C5
Maybe other cources:
http://www.skilledup.com/courses?keyword=linux+kernel&price_filter=0..0
Some examples:
http://www.staerk.de/thorsten/index.php/My_Tutorials/Writing_Linux_kernel_modules
http://www.freesoftwaremagazine.com/articles/drivers_linux
http://techblog.aasisvinayak.com/kernel-module-programming-tutorial/
http://www.linuxforu.com/2009/05/a-voyage-to-the-kernel-day-11/
Books (without mentioned in this thread LDD3):
http://www.coopj.com/ with an updated source code http://www.coopj.com/LPD/
KernelHacking:
http://kernelnewbies.org/KernelHacking
Visual map of the linux kernel: http://www.makelinux.net/kernel_map/
Linux and kernel books for beginners:
http://www.kroah.com/lkn/
http://swift.siphos.be/linux_sea/
You might be interested in the newly released Linux Driver Templates. As the name suggests, it provides templates and demonstrates frequently used Linux facilities to get started quickly.
I understand it is a delayed response !!
You can pick any book, those are really great books suggested above.
But you need to really work practically. Try to be involved into Kernel as much as possible.
Mostly you need to look into kernel source code itself.
And the most interesting document you can find in Documentation folder under Kernel tree.
best book for learning device driver programming is
"LDD"
Professional Linux Kernel Architecture is a good read also.
The best source is the linux man pages but they are somewhat critical to understand for a beginner, Directly programming device drivers is not a easy task. I recommend you to go through pointers and structures through following books
Basic C Books 1. Programming C - Byron gottfried 2. The C Programming Language - Dennis Ritchie
Intermediate Books 1. Pointers on C Kenneth Reek 2. Expert C Programming Deep Secrets - Linden
Coming to device Drivers I have uploaded the Kernel Source documentation in pdf format https://drive.google.com/folderview?id=0B7iRyndFhHldR3hjOHpOZTdKTjA&usp=sharing Youcan download from this link.
Device Drivers Basics (User mode Programming)
Linux Programming interface - Michael Kerrisk
Beginning Linux Programming Wrox Publishers
Device Drivers (Kernel Deleopment) 1. Linux Kernel Development - Robert Love 2. Linux Kernel Internals - m beck
Device Drivers (Driver Programming) 1. Linux Device Drivers - Third Edition (Free Download is available for 2.6 Kernel) 2. Essential Linux Device Drivers - Venkateswaran
For Basic Driver Knowledge Follow this site http://www.tldp.org/LDP/khg/HyperNews/get/devices/devices.html
My Experience is First of all we must gain a sound knowledge on C Programming, mainly Structures and Pointers before going through Driver Programming otherwise it will be bit cumbersome to understand driver programming.
Comming to Startup :-
User space programming
Basics of gcc generating proprocessed, assembler and object files using gcc commands analysis of object files using different object tools, Basic programming in linux, threads(locks, synchronization techniques), signals, processes(fork, exec), timers(Posix). This will help you lot in understanding kernel concepts.
Kernel Programming
Understanding the kernel source tree, different branches and their importance, using ctags and cscope to browse kernel source code, this will help you in kernel source browsing.
Driver Programming
First of all Learn different driver classes, char, block etc.,
Next learn the device protocols, transmission and reception, the product manual is the best source for going through this.
Then start writing the simple char driver for example RTC (a port mapped device), IOAPIC (A memory mapped device), then go to USB, PCI, Network, I2C, SPI etc., if you want the help you can find the skeleton code for all this in kernel source tree.

Comparison of embedded operating systems?

I've been involved in embedded operating systems of one flavor or another, and have generally had to work with whatever the legacy system had. Now I have the chance to start from scratch on a new embedded project.
The primary constraints on the system are:
It needs a web-based interface.
Inputs are required to be processed in real-time (so a true RTOS is needed).
The memory available is 32MB of RAM and FLASH.
The operating systems that the team has used previously are VxWorks, ThreadX, uCos, pSOS, and Windows CE.
Does anyone have a comparison or trade study regarding operating system choice?
Are there any other operating systems that we should consider? (We've had eCos and RT-Linux suggested).
Edit - Thanks for all the responses to date. A pity I can't flag all as "accepted".
I think it would be wise to evaluate carefully what you mean by "RTOS". I have worked for years at a large company that builds high-performance embedded systems, and they refer to them as "real-time", although that's not what they really are. They are low-latency and have deterministic schedulers, and 9 times out of 10, that's what people are really after when they say RTOS.
True real-time requires hardware support and is likely not what you really mean. If all you want is low latency and deterministic scheduling (again, I think this is what people mean 90% of the time when they say "real-time"), then any Linux distribution would work just fine for you. You could probably even get by with Windows (I'm not sure how you control the Windows scheduler though...).
Again, just be careful what you mean by "Real-time".
It all depends on how much time was allocated for your team has to learn a "new" RTOS.
Are there any reasons you don't want to use something that people already have experience with?
I have plenty of experience with vxWorks and I like it, but disregard my opinion as I work for WindRiver.
uC/OS II has the advantage of being fully documented (as in the source code is actually explained) in Labrosse's Book. Don't know about Web Support though.
I know pSos is no longer available.
You can also take a look at this list of RTOSes
I worked with QNX many years ago, and have nothing but great things to say about it. Even back then, QNX 4 (which is positively chunky compared to the Neutrino microkernel) was perfectly suited for low memory situations (though 32MB is oodles compared to the 1-2MB that we had to play with), and while I didn't explicitly play with any web-based stuff, I know Apache was available.
I purchased some development hardware from netburner
It has been very easy to work with and very well documented. It is an RTOS running uCLinux. The company is great to work with.
It might be a wise decision to select an OS that your team is experienced with. However I would like to promote two good open source options:
eCos (has you mentioned)
RTEMS
Both have a lot of features and drivers for a wide variety of architectures. You haven't mentioned what architecture you will be using. They provide POSIX layers which is nice if you want to stay as portable as possible.
Also the license for both eCos and RTEMS is GPL but with an exception so that the executable that is produced by linking against the kernel is not covered by GPL.
The communities are very active and there are companies which provide commercial support and development.
We've been very happy with the Keil RTX system....light and fast and meets all of our tight real time constraints. It also has some nice debugging features built in to monitor stack overflow, etc.
I have been pretty happy with Windows CE, although it is 'heavier'.
Posting to agree with Ben Collins -- your really need to determine if you have a soft real-time requirement (primarily for human interaction) or hard real-time requirement (for interfacing with timing-sensitive devices).
Soft can also mean that you can tolerate some hiccups every once in a while.
What is the reliability requirements? My experience with more general-purpose operating systems like Linux in embedded is that they tend to experience random hiccups due to their smart average-case optimizations that try to avoid starvation and similar for individual tasks.
VxWorks is good:
good documentation;
friendly developing tool;
low latency;
deterministic scheduling.
However, I doubt that WindRiver would convert their major attention to Linux and WindRiver Linux would break into the market of WindRiver VxWorks.
Less market, less requirement of engineers.
Here is the latest study. The last one was done more than 8 years ago so this is most relevant. The tables can be used to add additional RTOS choices. You'll note that this comparison is focused on lighter machines but is equally applicable to heavier machines provided virtual memory is not required.
http://www.embedded.com/design/operating-systems/4425751/Comparing-microcontroller-real-time-operating-systems

What are some resources for getting started in operating system development? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
Questions asking us to recommend or find a tool, library or favorite off-site resource are off-topic for Stack Overflow as they tend to attract opinionated answers and spam. Instead, describe the problem and what has been done so far to solve it.
Closed 8 years ago.
Improve this question
One thing I've always wanted to do is develop my very own operating system (not necessarily fancy like Linux or Windows, but better than a simple boot loader which I've already done).
I'm having a hard time finding resources/guides that take you past writing a simple "Hello World" OS.
I know lots of people will probably recommend I look at Linux or BSD; but the code base for systems like that is (presumably) so big that I wouldn't know where to start.
Any suggestions?
Update: To make it easier for people who land on this post through Google here are some OS development resources:
Writing Your Own Operating System (Thanks Adam)
Linux From Scratch (Thanks John)
SharpOS (C# Operating System) (Thanks lomaxx)
Minix3 and Minix2 (Thanks Mike)
OS Dev Wiki and Forums (Thanks Steve)
BonaFide (Thanks Steve)
Bran (Thanks Steve)
Roll your own toy UNIX-clone OS (Thanks Steve)
Broken Thorn OS Development Series
Other resources:
I found a nice resource named MikeOS, "MikeOS is a learning tool to demonstrate how simple OSes work. It uses 16-bit real mode for BIOS access, so that it doesn't need complex drivers"
Updated 11/14/08
I found some resources at Freebyte's Guide to...Free and non-free Operating Systems that links to kits such as OSKit and ExOS library. These seem super useful in getting started in OS development.
Updated 2/23/09
Ric Tokyo recommended nanoos in this question. Nanoos is an OS written in C++.
Updated 3/9/09
Dinah provided some useful Stack Overflow discussion of aspiring OS developers: Roadblocks in creating a custom operating system discusses what pitfalls you might encounter while developing an OS
and OS Development is a more general discussion.
Updated 7/9/09
LB provided a link to the Pintos Project, an education OS designed for students learning OS development.
Updated 7/27/09 (Still going strong!)
I stumbled upon an online OS course from Berkley featuring 23 lectures.
TomOS is a fork of MikeOS that includes a little memory manager and mouse support. As MikeOS, it is designed to be an educational project. It is written in NASM assembler.
Updated 8/4/09
I found the slides and other materials to go along with the online Berkeley lectures listed above.
Updated 8/23/09
All questions tagged osdev on stackoverflow
OS/161 is an academic OS written in c that runs on a simulated hardware. This OS is similar in Nachos. Thanks Novelocrat!
tangurena recommends http://en.wikipedia.org/wiki/MicroC/OS-II, an OS designed for embedded systems. There is a companion book as well.
Linux Kernel Development by Robert Love is suggested by Anders. It is a "widely acclaimed insider's look at the Linux kernel."
Updated 9/18/2009
Thanks Tim S. Van Haren for telling us about Cosmos, an OS written entirely in c#.
tgiphil tells us about Managed Operating System Alliance (MOSA) Framework, "a set of tools, specifications and source code to foster development of managed operating systems based on the Common Intermediate Language."
Update 9/24/2009
Steve found a couple resources for development on windows using Visual Studio, check out BrokenThorn's guide setup with VS 2005 or OSDev's VS Section.
Updated 9/5/2012
kerneltrap.org is no longer available. The linux kernel v0.01 is available from kernel.org
Updated 12/21/2012
A basic OS development tutorial designed to be a semester's project. It guides you through to build an OS with basic components. Very good start for beginners. Related paper. Thanks Srujan!
Updated 11/15/2013
Writing a Simple Operating System From Scratch. Thanks James Moore!
Updated 12/8/2013
How to make a computer operating system Thanks ddtoni!
Updated 3/18/2014
ToAruOS an OS built mostly from scratch, including GUI
Updated Sept 12 2016
Writing your own Toy Operating System
Updated Dec 10 2016
Writing a Simple Operating System —from Scratch (thank you #Tyler C)
There are a lot of links after this brief overview of what is involved in writing an OS for the X86 platform.
The link that appears to be most promising (www.nondot.org/sabre/os/articles) is no longer available, so you'll need to poke through the Archive.org version to read it.
At the end of the day the bootloader takes the machine code of the kernel, puts it in memory, and jumps to it. You can put any machine code in the kernel that you want, but most C programs expect an OS so you'll need to tell your compiler that it won't have all that, or the bootloader has to create some of it.
The kernel then does all the heavy lifting, and I suspect it's the example kernel you want. But there's a long way to go between having a kernel that says, "Hello world" to having a kernel that loads a command interpretor, provides disk services, and loads and manages programs.
You might want to consider subscribing to ACM to get access to their older literature - there are lots of articles in the late 80's and early 90's in early computing magazines about how to create alternative OSs. There are likely books that are out of print from this era as well. You might be able to get the same information for free by looking up the indexes of those magazines (which are available on that site - click "index" near the magazine name) and then asking around for people with a copy.
Lastly, I know that usenet is dead (for so sayeth the prophets of internet doom) but you'll find that many of the craggy old experts from that era still live there. You should search google groups (they have dejanews's old repository) and I expect you'll find many people asking the same questions a decade or 1.5 ago that you're asking now. You may even run across Linus Torvalds' many queries for help as he was developing linux originally. If searches don't bring anything up, ask in the appropriate newsgroup (probably starts with comp.arch, but search for ones with OS in the name).
Minix is a lot smaller, and designed for learning purposes, and the book to go with it is a good one too.
Update: I guess Minix 3 is a bit of a different goal, but Minix 2 (and of course the first version) were for teaching purposes.
As someone who has written a real-time multi-tasking operating system from scratch...
keyboard debounce routine, keyboard driver, disk driver, video driver, file system, and finally a boot-loader - and that's just to launch it for the first time with nothing to do!
... I cannot emphasize enough how important it is to get familiar with the hardware! This is especially so if you really want to do it all yourself instead of just picking up a primitive system someone else has already laid out for you. For example, contact Intel and ask them for a CPU card for your type of CPU! This will lay it out for you - the "pin-outs", interrupts, opcodes, you name it!
Remember the hardware makes it all possible. Study the hardware. You won't regret it.
.
Write a microcontroller OS. I recommend an x86 based microcontroller. A modern OS is just huge. Learn the basics first.
I wish there was one place to get all of the info about developing your own OS. The closest to come to that is OS Dev Wiki and Forums. They offer a ton of good information regarding the setup, development, and device hardware information.
Also there are some great tutorials at BoneFide, I've used the getting started tutorial by Bran, and am now looking at a more recent one based on his called Roll your own toy UNIX-clone OS.
I second checking out: "Operating Systems : Design and Implementation"
And if you want to develop on Windows, check out jolson's blog post.
Edit:
For development on windows using Visual Studio, check out BrokenThorn's guide or OSDev's wiki.
An excellent resource is the material of the MIT course 6.828: Operating System Engineering.
XV6 - simple Unix-like teaching OS written in ANSI C for x86
http://pdos.csail.mit.edu/6.828/2012/xv6.html
XV6 source - as a printed booklet with line numbers
http://pdos.csail.mit.edu/6.828/2012/xv6/xv6-rev7.pdf
XV6 book - explains the main ideas of os design
http://pdos.csail.mit.edu/6.828/2012/xv6/book-rev7.pdf
The material is compact: 92 pages source and 96 pages commentary.
I like it more than the Minix book! It's a true gem!
you also might want to take a look at SharpOS which is an operating system that they're writing in c#.
There are good resources for operating system fundamentals in books. Since there isn't much call to create new OS's from scratch you won't find a ton of hobbyist type information on the internet.
I recommend the standard text book, "Modern Operating Systems" by Tanenbaum. You may also be able to find "Operating System Elements" by Calingaert useful - it's a thin overview of a book which give a rough sketch of what an OS is from a designer's standpoint.
If you have any interest in real time systems (and you should at least understand the differences and reasons for real time OS's) then I'd also recommend "MicroC/OS-II" by Labrosse.
Edit:
Can you specify what you mean by "more technical"? These books give pseudo code implementation details, but are you looking for an example OS, or code snippets for a particular machine/language?
-Adam
Just coming from another question. I'd like to mention Pintos... I remembered my OS course with Nachos and Pintos seems to be the same kind of thing that can run on x86.
I found Robert Love's Linux Kernel Development quite interesting. It tells you about how the different subsystems in the Linux kernel works in a very down-to-earth way. Since the source is available Linux is a prime candidate for something to hack on.
Here are some other Stack Overflow pages worth incorporating into this discussion:
Roadblocks in creating a custom operating system
Developing an operating system for the x86 architecture
My operating systems course in undergrad had us building a number of subsystems for OS/161, a simple, BSD-like kernel that provides some of the basics while leaving the freedom to explore various design space decisions in implementing higher-level services.
Start hacking away at Minix. It's a lot smaller than Linux (obviously) and it's designed with teaching purposes in mind (some, at least). Not Minix 3 though, that's a whole different story.
Already answer, but when I took Operating Systems in college we started with an early linux kernel and added simplistic modern features (basic file systems, virtual memory, multitasking, mutexes). Good fun. You get to skip some of the REALLY crazy low level assembly only stuff for mucking w/ protected mode and page tables while still learned some of the guts.
http://kerneltrap.org/node/14002
http://kerneltrap.org/files/linux-0.01.tar.bz2
I would like to include this repo How-to-Make-a-Computer-Operating-System by Samy Pesse. Is a work-in-progress. Very interesting.
You might want to look at linuxfromscratch.
Linux From Scratch (LFS) is a project
that provides you with step-by-step
instructions for building your own
custom Linux system, entirely from
source code.
A simple and basic OS development tutorial designed to be a semester's project. It guides you through to build an OS with basic components. Very good start for beginners. Related paper is here.
One reasonably simple OS to study would be µC/OS. The book has a floppy with the source on it.
http://en.wikipedia.org/wiki/MicroC/OS-II
Check out the Managed Operating System Alliance (MOSA) Project at www.mosa-project.org. They are designing an AOT/JIT compiler and fully managed operating system in C#. Some of the developers are from the inactive SharpOS project.
I've toyed with Cosmos, which is "an operating system project implemented completely in CIL compliant languages." It's written in C#, so that was right up my alley. For someone like myself who has never attempted to build an operating system, it was actually pretty cool to be able to get a "Hello World" operating system running in no time.
Check out this site: http://osix.net/modules/article/?id=359
As mentioned above, the OSDev Wiki is (by far) the best source for OS development. For those of you who speak German, the lowlevel.eu Wiki is also great. Something relatively unknown Incitatus OS, a simple kernel with a tiny set of userspace apps. It's great to use for getting into the complicated topic of OS development.
Movitz is a Lisp environment written in Common Lisp and running "on the metal". Unfortunately, some links on the Movitz main page deny access, but you can find instructions on how to download and compile the source code from the trac page. Also, a ready image can be found on the archive of this page.
IMHO this is utmost interesting, as it brings back the Lisp machine concept on the currently available hardware. It failed commercially, but this does not prove to me that the idea was bad.
The Unix haters handbook is a fun book that semi-seriously berates the concept of Unix and its derivatives. Many sections argument about how better the Lisp machine concept was.
Here's a paper called "Writing a Simple Operating System From Scratch". It covers writing a bootloader, entering x86-32 protected mode, and writing a basic kernel in C. It seems to do a good job at explaining everything in detail.
The x86 JS simulator and ARM simulator can also be very useful to understand how different pieces hardware works and make tests without exiting your favourite browser.
Intresting Question for the programmers. See it will take long long long time to build OS like Windows or Mac but if you want build a simple ones then you can try your best
You need to focus on Assembly Language,C and C++. You should be expert in these languages.
First read a good book on how OS works[Google it], then read all the info from Wiki OS
Search in youtube "How to create your own OS in Assembly Language" watch the video, Eg. Video
Download Linux OS source code and compile it yourself and try to modify the code yourself
Now you are an experienced OS editor now download Minix and QNX and start developing with them and get their docs from here Minix Doc and QNX Doc
Now you have gained the master degree(Not completely just a little more to go) in creating OS now distribute this knownledge to your freinds and with their help try to create an OS as powerful as Mac, Linux or Windows
When you have made a basic operating system it's actually hard to continue because there isn't many ressources on making GUIs or porting libraries. But i think taking a look at ToAruOS would help a lot!
The code under the surface of that OS is so damn simple! but at the same time he has ported things like cairo, python, (not yet but soon) sdl, made share memory and he has also made his own widget toolkit. It's all written in C.
Another interesting OS would be pedigreeOS. It's made by JamesM (the man behind jamesM's kernel tutorial. While it has more features than ToaruOS it's also bigger and more confusing.
But anyway these 2 OS will help you a lot especially ToAruOS.
When I started working on my basic operating systems I needed a basic guide like Stepping stones for a basic operating system. It helped me not loose my head.
That if you want to make it from absolutely nothing (pure assembly code)