Convert an Rows or Columns to a dataframe - scala

I know I can extract columns like this:
userData1.select(userData1("job"))
But what if I already have a column, or an array of columns, how do I get a dataframe out of it? What has worked for me so far is:
userData1.select(userData1("id"), userData1("age"))
This is a bit verbose and ugly compared to what you can do in R:
userData1[, c("id", "age")]
And what about rows? For example:
userData1.head(5)
How do you convert this into a new dataframe?

To select multiple columns you can use varargs syntax:
import org.apache.spark.sql.DataFrame
val df: DataFrame = sc.parallelize(Seq(
(1, "x", 2.0), (2, "y", 3.0), (3, "z", 4.0)
)).toDF("foo", "bar", "baz")
// or df.select(Seq("foo", "baz") map col: _*)
val fooAndBaz: DataFrame = df.select(Seq($"foo", $"baz"): _*)
fooAndBaz.show
// +---+---+
// |foo|baz|
// +---+---+
// | 1|2.0|
// | 2|3.0|
// | 3|4.0|
// +---+---+
PySpark equivalent is arguments unpacking:
df = sqlContext.createDataFrame(
[(1, "x", 2.0), (2, "y", 3.0), (3, "z", 4.0)],
("foo", "bar", "baz"))
df.select(*["foo", "baz"]).show()
## +---+---+
## |foo|baz|
## +---+---+
## | 1|2.0|
## | 2|3.0|
## | 3|4.0|
## +---+---+
To limit number of rows without collecting you can use limit method:
val firstTwo: DataFrame = df.limit(2)
firstTwo.show
// +---+---+---+
// |foo|bar|baz|
// +---+---+---+
// | 1| x|2.0|
// | 2| y|3.0|
// +---+---+---+
which is equivalent to SQL LIMIT clause:
df.registerTempTable("df")
sqlContext.sql("SELECT * FROM df LIMIT 2").show
// +---+---+---+
// |foo|bar|baz|
// +---+---+---+
// | 1| x|2.0|
// | 2| y|3.0|
// +---+---+---+

Related

Exclude Alphabet and Special character from Alphanumeric string in Spark Scala

How can we exclude all alphabet from string keeping only numeric value in seperate column using spark 2.0 with scala.
Input
"ActivalteTime": "PT5M",
"ReActivalteTime": "xy20$",
Output
"NewActivalteTime": "5",
"NewReActivalteTime": "20",
Please help
Here's a slightly generalized approach to handle an arbitrary list of columns to be extracted for numeric content using regexp_extract:
import org.apache.spark.sql.functions._
import spark.implicits._
val df = Seq(
(1, "A", "PT5M", "xy20$", "M100.1!"),
(2, "B", "QU6N", "uv%", "N200.2&")
).toDF("C1", "C2", "C3", "C4", "C5")
val colsToExtract = Seq("C3", "C4", "C5")
val colsRemained = df.columns diff colsToExtract
val prefix = "New"
df.select(colsRemained.map(col) ++ colsToExtract.map(c =>
regexp_extract(col(c), "([0-9.]+)", 1).as(s"${prefix}$c")): _*
).show
// +---+---+-----+-----+-----+
// | C1| C2|NewC3|NewC4|NewC5|
// +---+---+-----+-----+-----+
// | 1| A| 5| 20|100.1|
// | 2| B| 6| |200.2|
// +---+---+-----+-----+-----+
Use Regexp_extract function to extract only the digits from the string.
val df=Seq((""""ActivalteTime": "PT5M","""),(""""ReActivalteTime": "xy20$",""")).toDF("text")
df.show(false)
Result:
+---------------------------+
|text |
+---------------------------+
|"ActivalteTime": "PT5M", |
|"ReActivalteTime": "xy20$",|
+---------------------------+
Using Regexp_extract:
df.withColumn("num",regexp_extract($"text","(\\d+)",1)).show(false)
+---------------------------+---+
|text |num|
+---------------------------+---+
|"ActivalteTime": "PT5M", |5 |
|"ReActivalteTime": "xy20$",|20 |
+---------------------------+---+

spark expression rename the column list after aggregation

I have written below code to group and aggregate the columns
val gmList = List("gc1","gc2","gc3")
val aList = List("val1","val2","val3","val4","val5")
val cype = "first"
val exprs = aList.map((_ -> cype )).toMap
dfgroupBy(gmList.map (col): _*).agg (exprs).show
but this create a columns with appending aggregation name in all column as shown below
so I want to alias that name first(val1) -> val1, I want to make this code generic as part of exprs
+----------+----------+-------------+-------------------------+------------------+---------------------------+------------------------+-------------------+
| gc1 | gc2 | gc3 | first(val1) | first(val2)| first(val3) | first(val4) | first(val5) |
+----------+----------+-------------+-------------------------+------------------+---------------------------+------------------------+-------------------+
One approach would be to alias the aggregated columns to the original column names in a subsequent select. I would also suggest generalizing the single aggregate function (i.e. first) to a list of functions, as shown below:
import org.apache.spark.sql.functions._
val df = Seq(
(1, 10, "a1", "a2", "a3"),
(1, 10, "b1", "b2", "b3"),
(2, 20, "c1", "c2", "c3"),
(2, 30, "d1", "d2", "d3"),
(2, 30, "e1", "e2", "e3")
).toDF("gc1", "gc2", "val1", "val2", "val3")
val gmList = List("gc1", "gc2")
val aList = List("val1", "val2", "val3")
// Populate with different aggregate methods for individual columns if necessary
val fList = List.fill(aList.size)("first")
val afPairs = aList.zip(fList)
// afPairs: List[(String, String)] = List((val1,first), (val2,first), (val3,first))
df.
groupBy(gmList.map(col): _*).agg(afPairs.toMap).
select(gmList.map(col) ::: afPairs.map{ case (v, f) => col(s"$f($v)").as(v) }: _*).
show
// +---+---+----+----+----+
// |gc1|gc2|val1|val2|val3|
// +---+---+----+----+----+
// | 2| 20| c1| c2| c3|
// | 1| 10| a1| a2| a3|
// | 2| 30| d1| d2| d3|
// +---+---+----+----+----+
You can slightly change the way you are generating the expression and use the function alias in there:
import org.apache.spark.sql.functions.col
val aList = List("val1","val2","val3","val4","val5")
val exprs = aList.map(c => first(col(c)).alias(c) )
dfgroupBy( gmList.map(col) : _*).agg(exprs.head , exprs.tail: _*).show
Here's a more generic version that will work with any aggregate functions and doesn't require naming your aggregate columns up front. Build your grouped df as you normally would, then use:
val colRegex = raw"^.+\((.*?)\)".r
val newCols = df.columns.map(c => col(c).as(colRegex.replaceAllIn(c, m => m.group(1))))
df.select(newCols: _*)
This will extract out only what is inside the parentheses, regardless of what aggregate function is called (e.g. first(val) -> val, sum(val) -> val, count(val) -> val, etc.).

Row aggregations in Scala

I am looking for a way to get a new column in a data frame in Scala that calculates the min/max of the values in col1, col2, ..., col10 for each row.
I know I can do it with a UDF but maybe there is an easier way.
Thanks!
Porting this Python answer by user6910411
import org.apache.spark.sql.functions._
val df = Seq(
(1, 3, 0, 9, "a", "b", "c")
).toDF("col1", "col2", "col3", "col4", "col5", "col6", "Col7")
val cols = Seq("col1", "col2", "col3", "col4")
val rowMax = greatest(
cols map col: _*
).alias("max")
val rowMin = least(
cols map col: _*
).alias("min")
df.select($"*", rowMin, rowMax).show
// +----+----+----+----+----+----+----+---+---+
// |col1|col2|col3|col4|col5|col6|Col7|min|max|
// +----+----+----+----+----+----+----+---+---+
// | 1| 3| 0| 9| a| b| c|0.0|9.0|
// +----+----+----+----+----+----+----+---+---+

How to replace values in RDD 1 per keys in RDD 2?

Here are two RDDs.
Table1-pair(key,value)
val table1 = sc.parallelize(Seq(("1", "a"), ("2", "b"), ("3", "c")))
//RDD[(String, String)]
Table2-Arrays
val table2 = sc.parallelize(Array(Array("1", "2", "d"), Array("1", "3", "e")))
//RDD[Array[String]]
I am trying to change elements of table2 such as "1" to "a" using the keys and values in table1. My expect result is as follows:
RDD[Array[String]] = (Array(Array("a", "b", "d"), Array("a", "c", "e")))
Is there a way to make this possible?
If so, would it be efficient using a huge dataset?
I think we can do it better with dataframes while avoiding joins as it might involve shuffling of data.
val table1 = spark.sparkContext.parallelize(Seq(("1", "a"), ("2", "b"), ("3", "c"))).collectAsMap()
//Brodcasting so that mapping is available to all nodes
val brodcastedMapping = spark.sparkContext.broadcast(table1)
val table2 = spark.sparkContext.parallelize(Array(Array("1", "2", "d"), Array("1", "3", "e")))
def changeMapping(value: String): String = {
brodcastedMapping.value.getOrElse(value, value)
}
val changeMappingUDF = udf(changeMapping(_:String))
table2.toDF.withColumn("exploded", explode($"value"))
.withColumn("new", changeMappingUDF($"exploded"))
.groupBy("value")
.agg(collect_list("new").as("mappedCol"))
.select("mappedCol").rdd.map(r => r.toSeq.toArray.map(_.toString))
Let me know if it suits your requirement otherwise I can modify it as needed.
You can do that in Dataset
package dataframe
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.{SQLContext, SparkSession}
import org.apache.spark.{SparkConf, SparkContext}
/**
* #author vaquar.khan#gmail.com
*/
object Test {
case class table1Class(key: String, value: String)
case class table2Class(key: String, value: String, value1: String)
def main(args: Array[String]) {
val spark =
SparkSession.builder()
.appName("DataFrame-Basic")
.master("local[4]")
.getOrCreate()
import spark.implicits._
//
val table1 = Seq(
table1Class("1", "a"), table1Class("2", "b"), table1Class("3", "c"))
val df1 = spark.sparkContext.parallelize(table1, 4).toDF()
df1.show()
val table2 = Seq(
table2Class("1", "2", "d"), table2Class("1", "3", "e"))
val df2 = spark.sparkContext.parallelize(table2, 4).toDF()
df2.show()
//
df1.createOrReplaceTempView("A")
df2.createOrReplaceTempView("B")
spark.sql("select d1.key,d1.value,d2.value1 from A d1 inner join B d2 on d1.key = d2.key").show()
//TODO
/* need to fix query
spark.sql( "select * from ( "+ //B1.value,B1.value1,A.value
" select A.value,B.value,B.value1 "+
" from B "+
" left join A "+
" on B.key = A.key ) B2 "+
" left join A " +
" on B2.value = A.key" ).show()
*/
}
}
Results :
+---+-----+
|key|value|
+---+-----+
| 1| a|
| 2| b|
| 3| c|
+---+-----+
+---+-----+------+
|key|value|value1|
+---+-----+------+
| 1| 2| d|
| 1| 3| e|
+---+-----+------+
[Stage 15:=====================================> (68 + 6) / 100]
[Stage 15:============================================> (80 + 4) / 100]
+-----+-----+------+
|value|value|value1|
+-----+-----+------+
| 1| a| d|
| 1| a| e|
+-----+-----+------+
Is there a way to make this possible?
Yes. Use Datasets (not RDDs as less effective and expressive), join them together and select fields of your liking.
val table1 = Seq(("1", "a"), ("2", "b"), ("3", "c")).toDF("key", "value")
scala> table1.show
+---+-----+
|key|value|
+---+-----+
| 1| a|
| 2| b|
| 3| c|
+---+-----+
val table2 = sc.parallelize(
Array(Array("1", "2", "d"), Array("1", "3", "e"))).
toDF("a").
select($"a"(0) as "a0", $"a"(1) as "a1", $"a"(2) as "a2")
scala> table2.show
+---+---+---+
| a0| a1| a2|
+---+---+---+
| 1| 2| d|
| 1| 3| e|
+---+---+---+
scala> table2.join(table1, $"key" === $"a0").select($"value" as "a0", $"a1", $"a2").show
+---+---+---+
| a0| a1| a2|
+---+---+---+
| a| 2| d|
| a| 3| e|
+---+---+---+
Repeat for the other a columns and union together. While repeating the code, you'll notice the pattern that will make the code generic.
If so, would it be efficient using a huge dataset?
Yes (again). We're talking Spark here and a huge dataset is exactly why you chose Spark, isn't it?

Spark, Scala, DataFrame: create feature vectors

I have a DataFrame that looks like follow:
userID, category, frequency
1,cat1,1
1,cat2,3
1,cat9,5
2,cat4,6
2,cat9,2
2,cat10,1
3,cat1,5
3,cat7,16
3,cat8,2
The number of distinct categories is 10, and I would like to create a feature vector for each userID and fill the missing categories with zeros.
So the output would be something like:
userID,feature
1,[1,3,0,0,0,0,0,0,5,0]
2,[0,0,0,6,0,0,0,0,2,1]
3,[5,0,0,0,0,0,16,2,0,0]
It is just an illustrative example, in reality I have about 200,000 unique userID and and 300 unique category.
What is the most efficient way to create the features DataFrame?
A little bit more DataFrame centric solution:
import org.apache.spark.ml.feature.VectorAssembler
val df = sc.parallelize(Seq(
(1, "cat1", 1), (1, "cat2", 3), (1, "cat9", 5), (2, "cat4", 6),
(2, "cat9", 2), (2, "cat10", 1), (3, "cat1", 5), (3, "cat7", 16),
(3, "cat8", 2))).toDF("userID", "category", "frequency")
// Create a sorted array of categories
val categories = df
.select($"category")
.distinct.map(_.getString(0))
.collect
.sorted
// Prepare vector assemble
val assembler = new VectorAssembler()
.setInputCols(categories)
.setOutputCol("features")
// Aggregation expressions
val exprs = categories.map(
c => sum(when($"category" === c, $"frequency").otherwise(lit(0))).alias(c))
val transformed = assembler.transform(
df.groupBy($"userID").agg(exprs.head, exprs.tail: _*))
.select($"userID", $"features")
and an UDAF alternative:
import org.apache.spark.sql.expressions.{
MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.types.{
StructType, ArrayType, DoubleType, IntegerType}
import scala.collection.mutable.WrappedArray
class VectorAggregate (n: Int) extends UserDefinedAggregateFunction {
def inputSchema = new StructType()
.add("i", IntegerType)
.add("v", DoubleType)
def bufferSchema = new StructType().add("buff", ArrayType(DoubleType))
def dataType = new VectorUDT()
def deterministic = true
def initialize(buffer: MutableAggregationBuffer) = {
buffer.update(0, Array.fill(n)(0.0))
}
def update(buffer: MutableAggregationBuffer, input: Row) = {
if (!input.isNullAt(0)) {
val i = input.getInt(0)
val v = input.getDouble(1)
val buff = buffer.getAs[WrappedArray[Double]](0)
buff(i) += v
buffer.update(0, buff)
}
}
def merge(buffer1: MutableAggregationBuffer, buffer2: Row) = {
val buff1 = buffer1.getAs[WrappedArray[Double]](0)
val buff2 = buffer2.getAs[WrappedArray[Double]](0)
for ((x, i) <- buff2.zipWithIndex) {
buff1(i) += x
}
buffer1.update(0, buff1)
}
def evaluate(buffer: Row) = Vectors.dense(
buffer.getAs[Seq[Double]](0).toArray)
}
with example usage:
import org.apache.spark.ml.feature.StringIndexer
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("category_idx")
.fit(df)
val indexed = indexer.transform(df)
.withColumn("category_idx", $"category_idx".cast("integer"))
.withColumn("frequency", $"frequency".cast("double"))
val n = indexer.labels.size + 1
val transformed = indexed
.groupBy($"userID")
.agg(new VectorAggregate(n)($"category_idx", $"frequency").as("vec"))
transformed.show
// +------+--------------------+
// |userID| vec|
// +------+--------------------+
// | 1|[1.0,5.0,0.0,3.0,...|
// | 2|[0.0,2.0,0.0,0.0,...|
// | 3|[5.0,0.0,16.0,0.0...|
// +------+--------------------+
In this case order of values is defined by indexer.labels:
indexer.labels
// Array[String] = Array(cat1, cat9, cat7, cat2, cat8, cat4, cat10)
In practice I would prefer solution by Odomontois so these are provided mostly for reference.
Suppose:
val cs: SparkContext
val sc: SQLContext
val cats: DataFrame
Where userId and frequency are bigint columns which corresponds to scala.Long
We are creating intermediate mapping RDD:
val catMaps = cats.rdd
.groupBy(_.getAs[Long]("userId"))
.map { case (id, rows) => id -> rows
.map { row => row.getAs[String]("category") -> row.getAs[Long]("frequency") }
.toMap
}
Then collecting all presented categories in the lexicographic order
val catNames = cs.broadcast(catMaps.map(_._2.keySet).reduce(_ union _).toArray.sorted)
Or creating it manually
val catNames = cs.broadcast(1 to 10 map {n => s"cat$n"} toArray)
Finally we're transforming maps to arrays with 0-values for non-existing values
import sc.implicits._
val catArrays = catMaps
.map { case (id, catMap) => id -> catNames.value.map(catMap.getOrElse(_, 0L)) }
.toDF("userId", "feature")
now catArrays.show() prints something like
+------+--------------------+
|userId| feature|
+------+--------------------+
| 2|[0, 1, 0, 6, 0, 0...|
| 1|[1, 0, 3, 0, 0, 0...|
| 3|[5, 0, 0, 0, 16, ...|
+------+--------------------+
This could be not the most elegant solution for dataframes, as I barely familiar with this area of spark.
Note, that you could create your catNames manually to add zeros for missing cat3, cat5, ...
Also note that otherwise catMaps RDD is operated twice, you might want to .persist() it
Given your input:
val df = Seq((1, "cat1", 1), (1, "cat2", 3), (1, "cat9", 5),
(2, "cat4", 6), (2, "cat9", 2), (2, "cat10", 1),
(3, "cat1", 5), (3, "cat7", 16), (3, "cat8", 2))
.toDF("userID", "category", "frequency")
df.show
+------+--------+---------+
|userID|category|frequency|
+------+--------+---------+
| 1| cat1| 1|
| 1| cat2| 3|
| 1| cat9| 5|
| 2| cat4| 6|
| 2| cat9| 2|
| 2| cat10| 1|
| 3| cat1| 5|
| 3| cat7| 16|
| 3| cat8| 2|
+------+--------+---------+
Just run:
val pivoted = df.groupBy("userID").pivot("category").avg("frequency")
val dfZeros = pivoted.na.fill(0)
dzZeros.show
+------+----+-----+----+----+----+----+----+
|userID|cat1|cat10|cat2|cat4|cat7|cat8|cat9|
+------+----+-----+----+----+----+----+----+
| 1| 1.0| 0.0| 3.0| 0.0| 0.0| 0.0| 5.0|
| 3| 5.0| 0.0| 0.0| 0.0|16.0| 2.0| 0.0|
| 2| 0.0| 1.0| 0.0| 6.0| 0.0| 0.0| 2.0|
+------+----+-----+----+----+----+----+----+
Finally, use VectorAssembler to create a org.apache.spark.ml.linalg.Vector
NOTE: I have not checked performances on this yet...
EDIT: Possibly more complex, but likely more efficient!
def toSparseVectorUdf(size: Int) = udf[Vector, Seq[Row]] {
(data: Seq[Row]) => {
val indices = data.map(_.getDouble(0).toInt).toArray
val values = data.map(_.getInt(1).toDouble).toArray
Vectors.sparse(size, indices, values)
}
}
val indexer = new StringIndexer().setInputCol("category").setOutputCol("idx")
val indexerModel = indexer.fit(df)
val totalCategories = indexerModel.labels.size
val dataWithIndices = indexerModel.transform(df)
val data = dataWithIndices.groupBy("userId").agg(sort_array(collect_list(struct($"idx", $"frequency".as("val")))).as("data"))
val dataWithFeatures = data.withColumn("features", toSparseVectorUdf(totalCategories)($"data")).drop("data")
dataWithFeatures.show(false)
+------+--------------------------+
|userId|features |
+------+--------------------------+
|1 |(7,[0,1,3],[1.0,5.0,3.0]) |
|3 |(7,[0,2,4],[5.0,16.0,2.0])|
|2 |(7,[1,5,6],[2.0,6.0,1.0]) |
+------+--------------------------+
NOTE: StringIndexer will sort categories by frequency => most frequent category will be at index=0 in indexerModel.labels. Feel free to use your own mapping if you'd like and pass that directly to toSparseVectorUdf.

Categories