Having background workers is a pretty common requirement for a decent sized app - but there doesn't seem to be any way to do this out of the box in Sails JS. What's the best way to implement this?
I don't know if this is the BEST way to do it, but this is how I have implemented it in our current system.
We're using sails.js in Elastic Beanstalk on AWS. This allows me to deploy a worker environment which listens to a queue. The configuration requires an endpoint which receives the messages from the queue.
With this in mind, I have created a WorkerController which has only an index action. This index action behaves as a router for the functions required to be executed via the queue.
You will need to lock down this controller+action route for security purposes.
To trigger the worker, I send a message to the queue with JSON body containing the parameters required. An example message would be:
{
"task": "processTransaction",
"id": 1207
}
These parameters are available to the WorkerController.index action as request parameters, which are then used to trigger a function and pass the arguments.
Related
I have an user interface and provide a button to the user, which executes the function longComputation(x: A): A and updates then the user interface (particularly the model) with the new result. This function may take longer to compute the result and should therefore compute in parallel.
Diode provides me with Effect, PotAction, and AsyncAction. I read the documentation about Effects and PotActions/AsyncActions, but I cannot even get a simple example to work.
Can someone point me to or provide an simple working example?
I created a ScalaFiddle based on the SimpleCounter example. There is a LongComputation button, which should run in parallel; but is not.
In JavaScript you cannot run things in parallel without using Web Workers because the JS engine is single-threaded. Web Workers are more like separate processes than threads, as they don't share memory and you need to send messages to communicate between workers and the main thread.
Have less than 50 reputation to comment, so I have to create a new answer instead of commenting #ochrons answer:
As mentioned Web Workers communicate via message passing and share no state. This concept is somehow similar to Akka - even Akka.js exists which enables you to use actor systems in ScalaJS and therefore the browser.
As far as I understand, in a CQRS-oriented API exposed through a RESTful HTTP API the commands and queries are expressed through the HTTP verbs, the commands being asynchronous and usually returning 202 Accepted, while the queries get the information you need. Someone asked me the following: supposing they want to change some information, they would have to send a command and then a query to get the resulting state, why to force the client to make two HTTP requests when you can simply return what they want in the HTTP response of the command in a single HTTP request?
We had a long conversation in DDD/CRQS mailing list a couple of months ago (link). One part of the discussion was "one way command" and this is what I think you are assuming. You can find out that Greg Young is opposed to this pattern. A command changes the state and therefore prone to failure, meaning it can fail and you should support this. REST API with POST/PUT requests provide perfect support for this but you should not just return 202 Accepted but really give some meaningful result back. Some people return 200 success and also some object that contains a URL to retrieve the newly created or updated object. If the command handler fails, it should return 500 and an error message.
Having fire-and-forget commands is dangerous since it can give a consumer wrong ideas about the system state.
My team also recently had a very heated discussion about this very thing. Thanks for posting the question. I have usually been the defender of the "fire and forget" style commands. My position has always been that, if you want to be able to move to an async command dispatcher some day, then you cannot allow commands to return anything. Doing so would kill your chances since an async command doesn't have much of a way to return a value to the original http call. Some of my team mates really challenged this thinking so I had to start thinking if my position was really worth defending.
Then I realized that async or not async is JUST an implementation detail. This led me to realize that, using our frameworks, we can build in middleware to accomplish the same thing our async dispatchers are doing. So, we can build our command handlers the way we want to, returning what ever makes sense, and then let the framework around the handlers deal with the "when".
Example: My team is building an http API in node.js currently. Instead of requiring a POST command to only return a blank 202, we are returning details of the newly created resource. This helps the front-end move on. The front-end POSTS a widget and opens a channel to the server's web socket using the same command as the channel name. the request comes to the server and is intercepted by middleware which passes it to the service bus. When the command is eventually processed synchronously by the handler, it "returns" via the web socket and the front-end is happy. The middleware can be disabled easily, making the API synchronous again.
There is nothing stopping you from doing that. If you execute your commands synchronously and create your projections synchronously, then it will be easy for you to just make a query directly after executing the command and returning that result. If you do this asynchronously via the rest-api, then you have no query result to send back. If you do it asynchronously within your system, then you can wait for the projection to be created and then send the response to the client.
The important thing is that you separate your write and read models in classic CQRS style. That does not mean that you cannot do a read in the same request as you do the command. Sure, you can send a command to the server and then with SignalR (or something) wait for a notification that your projection have been created/updated. I do not see a problem with waiting for the projection to be created on the server side instead for on the client.
How you do this will affect you infrastructure and error handling. Also, you will hold the HTTP request open for a longer time if you return the result at once.
When designing an application's back-end you will often need to abstract the systems that do things from the systems that actually do them.
There are elements of this in the CQRS and PubSub design patterns.
By way of example:
A new user submits a registration form
Your application receives that data and pushes out a message saying “hey i have some new user data, please do something with this”
A listener / handler / service grabs the data and processes it
(please let me know if that makes no sense)
In my applications I would usually:
Fire a new Event that a Listener is set up to process Event::fire('user.new', $data)
Create a new Command with the data, which is bound to a CommandHandler new NewUserCommand($data)
Call a method in a Service and pass in the data UserService::newUser($data)
While these are nearly exactly the same, I am just wondering - how do you go about deciding which one to use when you are creating the architecture of your applications?
Fire a new Event that a Listener is set up to process
Event::fire('user.new', $data)
Event pattern implies that there could be many handlers, subscribing to the same event and those handlers are disconnected form the sender. Also event handlers usually do not return information to the sender (because there can be actually many handlers and there is a confusion about whose information to return).
So, this is not your case.
Create a new Command with the data, which is bound to a CommandHandler
new NewUserCommand($data)
Commands are an extended way to perform some operation. They can be dispatched, pipelined, queued etc. If you don't need all that capabilities, why to complicate things?
Call a method in a Service and pass in the data
UserService::newUser($data)
Well, this is the most suitable thing for your case, isn't it?
While these are nearly exactly the same, I
am just wondering - how do you go about deciding which one to use when
you are creating the architecture of your applications?
Easy. From many solutions choose only those, which:
metaphorically suitable (do not use events, where your logic does not look like an event)
the simplest (do not go too deep into the depths of programming theories and methods. Always choose solution, that lowers your project development complexity)
When to use command over event?
Command: when I have some single isolated action with few dependencies which must be called from different application parts. The closest analogue is some editor command, which is accessible both from toolbar and menu.
Event: when I have several (at least in perspective) dependent actions, which may be called before/after some other action is executed. For example, if you have a number of services, you can use events to perform cache invalidation for them. Service, that changes a particular object emits "IChangedObject" event. Other services subscribe to such events and respond to them invalidating their cache.
I want to use elements of CQRS pattern in my project. I wonder if i do it right with Command and Events.
The thing that I'm not sure is if event can invoke command. To better show what i want to do I will use diagram and example.
This is an example:
User invoke TripCreateCommand. TripCreateCommandHandler do his job and after success publish TripCreatedEvent.
Now we have two listener to TripCreatedEvent (the order of listener execution does not matter)
First listener (can be execute after the second listener):
for each user in trip.author.friends invoke two Command (the order of commands is important)
PublishTripOnUserWallCommand
SendNewTripEmailNotificationCommand
SendNewTripPlatformNotification
Second listener (can be execute before the first listener):
PublishTripOnUserSocials
And this is sample diagram:
Is this a good way ? Can EventListener invoke Command, or maybe I should do it in some other way ?
Your question is about Mesage Driven Architecture which works together with but otherwise unrelated to CQRS.
Anyway, your diagram is almost correct. The event subscriber/handler (I prefer this terminology) can send new Commands via the service bus, but it's not a rule that you should always do this. I implement quite a lot of functionality directly in the event handler, although probalby would be more clean and reliable to send a new command. It really depends on what I want to do.
Note that the message handlers (commands or events) should not know about other handlers. They should know about the bus and the bus takes care of handling. This means that in your app, the event handlers would take the bus as dependency, create the command and send it via the bus. The event handler itself doesn't know what command handler generated the event and can 'reply' to it.
Usually the commands would be handled independently and you can't guarantee the order (unless they're handled synchronously) so maybe you want the second command to be issued as a result of the first command's handling. Indeed, it can be the case for a Saga.
AFAIK you are talking only about doing things synchronously, so your approach works in this case but it's probably not scalable. Moving to async handling will break this execution flow. However your application can be fine with it, not everyhting needs to be twitter.
A message driven architecture is not that straightforward and for some cases (like you want an immediate response from the backend) it's quite complicated to implement, at least more complicated than with the 'standard' approach. So maybe for those particular cases you might want to do it the 'old' way.
If you're worried about decoupling and testing, you can still design the services as they were message handlers but use them directly, instead of a service bus.
Not sure why you would need Commands for performing the updating the information on the user's wall. Why would you choose not to use a View Model Updater for that task.
Sending an email can be considered a Command but could also easily be viewed as just another View Model update.
Not clear on what the purpose of the SendNewTripPlatformNotification is, so I cannot give any suggestions there...
Some of this could also be a candidate for a Saga. Secondly I'm missing your Domain in the diagram, that is what should be responsible for publishing any events, or do you consider the CommandHandler to be the Domain?
I have a web application that I am adding workflow functionality to using Windows Workflow Foundation. I have based my solution around K. Scott Allen's Orders Workflow example on OdeToCode. At the start I didn't realise the significance of the caveat "if you use Delay activities with and configure active timers for the manual scheduling service, these events will happen on a background thread that is not associated with an HTTP request". I now need to use Delay activities and it doesn't work as is with his solution architecture. Has anyone come across this and found a good solution to this? The example is linked to from a lot of places but I haven't seen anyone else come across this issue and it seems like a bit of a show stopper to me.
Edit: The problem is that the results from the workflow are returned to the the web application via HttpContext. I am using the ManualWorkflowSchedulerService with the useActiveTimers and this works fine for most situations because workflow events are fired from the web app and HttpContext still exists when the workflow results are returned and the web app can continue processing. When a delay activity is used processing happens on a background thread and when it tries to return results to the web app, there is no valid HttpContext (because there has been no Http Request), so further processing fails. That is, the webapp is trying to process the workflow results but there has been no http request.
I think I need to do all post Delay activity processing within the workflow rather than handing off to the web app.
Cheers.
You didn't describe the problem you are having. But maybe this is of some help.
You can use the ManualWorkflowSchedulerService with the useActiveTimers and the workflow will continue on another thread. Normally this is fine because your HTTP request has already finished and it doesn't really matter.
If however you need full control the workflow runtime will let you get a handle on all loaded workflows using the GetLoadedWorkflows() function. This will return acollection of WorkflowInstance objects. usign these you can can call the GetWorkflowNextTimerExpiration() to check which is expired. If one is you can manually resume it. In this case you want to use the ManualWorkflowSchedulerService with the useActiveTimers=false so you can control the last thread as well. However in most cases using useActiveTimers=true works perfectly well.