How do I execute code once and only once in Swift? - swift

The answers I've seen so far (1, 2, 3) recommend using GCD's dispatch_once thus:
var token: dispatch_once_t = 0
func test() {
dispatch_once(&token) {
print("This is printed only on the first call to test()")
}
print("This is printed for each call to test()")
}
test()
Output:
This is printed only on the first call to test()
This is printed for each call to test()
But wait a minute. token is a variable, so I could easily do this:
var token: dispatch_once_t = 0
func test() {
dispatch_once(&token) {
print("This is printed only on the first call to test()")
}
print("This is printed for each call to test()")
}
test()
token = 0
test()
Output:
This is printed only on the first call to test()
This is printed for each call to test()
This is printed only on the first call to test()
This is printed for each call to test()
So dispatch_once is of no use if we I can change the value of token! And turning token into a constant is not straightforward as it needs to of type UnsafeMutablePointer<dispatch_once_t>.
So should we give up on dispatch_once in Swift? Is there a safer way to execute code just once?

A man went to the doctor, and said "Doctor, it hurts when I stamp on my foot". The doctor replied, "So stop doing it".
If you deliberately alter your dispatch token, then yes - you'll be able to execute the code twice. But if you work around the logic designed to prevent multiple execution in any way, you'll be able to do it. dispatch_once is still the best method to ensure code is only executed once, as it handles all the (very) complex corner cases around initialisation and race conditions that a simple boolean won't cover.
If you're worried that someone might accidentally reset the token, you can wrap it up in a method and make it as obvious as it can be what the consequences are. Something like the following will scope the token to the method, and prevent anyone from changing it without serious effort:
func willRunOnce() -> () {
struct TokenContainer {
static var token : dispatch_once_t = 0
}
dispatch_once(&TokenContainer.token) {
print("This is printed only on the first call")
}
}

Static properties initialized by a closure are run lazily and at most once, so this prints only once, in spite of being called twice:
/*
run like:
swift once.swift
swift once.swift run
to see both cases
*/
class Once {
static let run: Void = {
print("Behold! \(__FUNCTION__) runs!")
return ()
}()
}
if Process.arguments.indexOf("run") != nil {
let _ = Once.run
let _ = Once.run
print("Called twice, but only printed \"Behold\" once, as desired.")
} else {
print("Note how it's run lazily, so you won't see the \"Behold\" text now.")
}
Example runs:
~/W/WhenDoesStaticDefaultRun> swift once.swift
Note how it's run lazily, so you won't see the "Behold" text now.
~/W/WhenDoesStaticDefaultRun> swift once.swift run
Behold! Once runs!
Called twice, but only printed "Behold" once, as desired.

I think the best approach is to just construct resources lazily as needed. Swift makes this easy.
There are several options. As already mentioned, you can initialize a static property within a type using a closure.
However, the simplest option is to define a global variable (or constant) and initialize it with a closure then reference that variable anywhere the initialization code is required to have happened once:
let resourceInit : Void = {
print("doing once...")
// do something once
}()
Another option is to wrap the type within a function so it reads better when calling. For example:
func doOnce() {
struct Resource {
static var resourceInit : Void = {
print("doing something once...")
}()
}
let _ = Resource.resourceInit
}
You can do variations on this as needed. For example, instead of using the type internal to the function, you can use a private global and internal or public function as needed.
However, I think the best approach is just to determine what resources you need to initialize and create them lazily as global or static properties.

For anyone who stumbles on this thread... We ran into a similar situation at Thumbtack and came up with this: https://www.github.com/thumbtack/Swift-RunOnce. Essentially, it lets you write the following
func viewDidAppear(animated: Bool) {
super.viewDidAppear(animated: Bool)
runOnce {
// One-time code
}
}
I also wrote a blog post explaining how the code works, and explaining why we felt it was worth adding to our codebase.

I found this while searching for something similar: Run code once per app install. The above solutions only work within each app run. If you want to run something once across app launches, do this:
func runOnce() {
if UserDefaults.standard.object(forKey: "run_once_key") == nil {
UserDefaults.standard.set(true, forKey: "run_once_key")
/* run once code */
} else {
/* already ran one time */
}
}
If the app is deleted and re-installed, this will reset.
Use NSUbiquitousKeyValueStore for tracking a value across installs and devices as long as user using same appleID.

Related

Check for certain statements in Swift closure

I wrote a function which takes a closure as an argument like this:
func doSome(work: () -> Void = { print("sleeping...") } ) {
work()
}
Now I would like to investigate the work done.
Therefore I want to check if the given closure contains any print statements.
Somehow like this:
func doSome(work: () -> Void = { print("doing hard work...") } ) {
work()
if work.contains(print) {
print("we did some hard work there and printed something!")
}
}
How can I achieve that?
EDIT: What I am trying to achieve
An async function tries to connect to an http server - let's call it connect. It takes a closure as its parameter - called finally. As its name already indicates: the closure gets executed after the connecting attempt.
If the connecting attempt succeeds (http response code == 200), I need to call another function ONCE - let's call it so: once.
The connect function therefore looks like this:
func connect(finally: () -> Void = {}) {
httpRepsonse = asyncRequestToServer()
if httpResponse.statusCode == 200 {
once()
}
// and finally:
finally()
}
Other functions call connect and pass over their statements that they need for the connect function to execute finally.
And here comes the problem: there is one function that needs once executed every time, therefore it passes it over in the finally closure. If the connecting now succeeds, once gets called twice.
That's why I wanted to check the given closure already contains the once call, so I could avoid calling it twice.
Interrogating a closure for its contents is not easily done as far as I know.
You could do a workaround (depending on your needs and implementation of course) using one or more Boolean arguments which you would assign when calling the function, if relevant.
For example:
func doSome(work: () -> Void = { print("doing hard work...")}, containsPrint: Bool = false) {
// Call your work closure
work()
// Check conditions
if containsPrint {
print("We printed some stuff")
}
}
I am aware that this is a rather simple solution but it might provide the required functionality.
Use a global variable that you change whenever you print to the console, and check it inside you doSome(work:)
Short answer: You can't. As Alexander says, Swift does not support this. You would have to add some sort of housekeeping, as suggested in Carpsen90's answer.

Testing a class which preserves its state in private variables

I am writing unit tests for my class. This class preserves its state in some private variables (which I don't want to expose publicly). So the scenario is:
If I call a method, the first time it will keep that state in private properties and call a delegate method with some result.
When I call the same method a second time, the output will be different on the basis of the previous input.
I want to cover all the cases in my tests.
One easy way is to change my private properties to public so that I can mock the previous input in unit test.
The other way is to call the same method with different inputs in the same test twice. Where the first call will keep the state and the next call will be the actual test.
But both these ways seem awkward to me, and I am not sure of the best one.
What is the best way to write unit test for this class?
protocol ZoneUpdateDetectorOutput: class {
func updateZoneState(_ state: ZoneState)
}
class ZoneUpdateDetector {
var zoneChangeTimer: TimerProtocol?
weak var delegate: ZoneUpdateDetectorOutput?
private var previousZoneState: ZoneState?
private var expectedZoneState: ZoneState?
private func updateZoneState() {
// If `expectedZoneState` is not equal to `previousZoneState` then `delegate` will be called
// Otherwise it will just skip
if expectedZoneState != previousZoneState {
delegate?.updateZoneState(expectedZoneState!)
previousZoneState = expectedZoneState
}
}
private func runNotifyZoneStateTimer() {
guard zoneChangeTimer?.isValid() == false else {
return
}
zoneChangeTimer?.start(timeInterval: 5,
onFire: { [weak self] in
guard let strongSelf = self else {
return
}
// On timer fire, it will try to update the state
strongSelf.updateZoneState()
})
}
// When zone changes, this method is invoked
// I basically want to test this method
func zoneStateChanged(_ state: ZoneState) {
expectedZoneState = state
if state != .inZone {
runNotifyZoneStateTimer()
} else {
zoneChangeTimer?.stop()
}
}
}
You should never be testing internal state; you should only test externally (publically) visible behaviour. That way, you can change implementation details of your class without breaking any contracts, and thus without breaking any tests.
So the second option is the preferred one.
After researching and discussing with some experts, I come up with the solution that if we want to test a class which preserve it's state then the functionality which is preserving the state should go under a separate class. Which will serve the same purpose as setting the variables as private. So, ZoneUpdateDetector should have a dependency for example: ZoneUpdateStatePreserver and it should keep the state which was previously inside ZoneUpdateDetector

Class hierarchy - class should only called by another class

I try to implement a Security class and a Secret class. In my whole project the Secret class should only called by Security.getSecretInstance().doSomeSecretAction()
So Secret.doSomeSecretAction() should throw an compile error.
I need the Security.getSecretInstance() for an authentication process.
I'm searching for a good pattern or something else, but I think my searching keywords are too bad or my requirement is stupid/or not possible.
At the moment I call Security.getSecretInstance() it returns a singleton instance of Secret, but I could call Secret.doSomeSecretAction() too. There is no difference.
Do you have some pattern, keywords or snippets for me?
Edit
My definition of awesome would be that I have one method like this:
Security.isAuthorized { secret in
secret.doSomeSecretAction
}, failure {
print("permission denied")
}
And I can get secret only with this .isAuthorized-Method
What I would recommend doing is declare Secret nested inside Security, make Secret private and create non-private methods inside Security that can access Secret. Something like this:
class Security {
class func doSomeSecretAction() {
Secret.doSomeSecretAction()
}
private class Secret {
class func doSomeSecretAction(){
print("Private method called")
}
}
}
Security.doSomeSecretAction()
Here, Security.doSomeSecretAction() can be called from outside the Security class, but Secret.doSomeSecretAction() can only be called inside the Security class.
Update based on comments:
A feasible solution would be declaring the initializer of Security private, so it can only be called from inside the Security class and declaring a computed variable (for now I called it shared) which is the only access point to the initializer. This computed variable either returns nil or a new instance of the Secret class based on Security.isAuthorized. This way, every time a function of Secret is called, the authorisation status is checked and the function can only be called if the status is authorised, otherwise the shared variable returns nil and hence the method is not called.
class Security {
static var isAuthorized = false //change this when the authorisation status changes
class Secret {
static var shared: Secret? {
if Security.isAuthorized {
return Secret()
} else {
return nil
}
}
private init(){} //a new instance of Secret can only be created using the `shared` computed variable, the initializer cannot be called directly from outside the Secret class
func doSomeSecretAction(){
print("Private method called")
}
}
}
Security.Secret.shared //nil
//Security.Secret.init() //if you uncomment this line, you'll get an error saying all initializers are inaccessible
Security.Secret.shared?.doSomeSecretAction() //nil
Security.isAuthorized = true
Security.Secret.shared?.doSomeSecretAction() //function is called
Security.isAuthorized = false
Security.Secret.shared?.doSomeSecretAction() //nil
I was working on this answer while Dávid was editing his; I didn't realize he'd posted an update awhile ago. There's a lot of overlap in our answers, so this is just another style of the same approach.
First, I want to be clear that what you're describing can only implement encapsulation, not "security." I mean that you can build a system that makes it easy for developers to use it correctly and difficult to use it incorrectly. That's pretty straightforward. But you won't be able to stop a developer from extracting the secret and running any code they want. It's their machine and you're giving them the code. They can always run it. They have a debugger; you're not going to hide anything.
But, preventing accidental misuse is a fine goal, and pretty straightforward. The first thing is that you should work with instance methods, not class methods. Class methods makes all of this harder than it needs to be. A solution to your problem will look something like this, relying on fileprivate for most of the access control.
class Security {
enum Error: Swift.Error {
case unauthorized
}
// This feels like it should be nested in Security, but doesn't have to be
class Secret {
// No one outside this file can instantiate one of these. It's likely
// that you'll be passing some parameters here of course.
fileprivate init() {}
// I'm assuming you want these to be single use, so people can't store
// a reference to them an reuse them. This is one simple way.
fileprivate var isAuthorized = true
private func validate() {
// I'm treating this kind of reuse as a programming error and
// crashing. You could throw if you wanted, but it feels like it
// should never happen given your design.
guard isAuthorized else {
fatalError("Secrets can only be used once")
}
}
func doSomeSecretAction() {
// Every "protected" method (which may be all of them) needs to
// call validate() before running.
validate()
print("SECRET!")
}
}
// Public so we can test; obviously this would at least private(set)
var isAuthorized = false
func withAuthorization(execute: (Secret) -> Void) throws {
guard isAuthorized else { throw Error.unauthorized }
// We create a new Secret for every access and invalidate it after.
// That prevents them from being stored and reused.
let secret = Secret()
execute(secret)
secret.isAuthorized = false
}
}
// -- Some other file
let security = Security()
security.isAuthorized = true // For testing
var stealingTheSecret: Security.Secret?
do {
try security.withAuthorization {
$0.doSomeSecretAction() // This is good
stealingTheSecret = $0 // Try to steal it for later use
}
} catch Security.Error.unauthorized {
print("Unauthorized")
}
stealingTheSecret?.doSomeSecretAction() // Let's use it: Crash!
In principle you could get rid of the validate() boilerplate by allocating the memory for Secret directly with UnsafeMutablePointer and destroying it at the end, but this is probably more trouble than it's worth to avoid one extra line of code.
(Note that allocating the memory yourself still wouldn't protect you against the caller saving the object; they can always make a copy of the memory and re-instantiate it with .load; any unsafe thing you can do, so can the caller. This also allows them to circumvent validate() by directly modifying the boolean or copying the object before you invalidate it. There is no technique that will prevent unsafe memory access; this is why you cannot protect secrets inside code.)
After research I find a good and simple solution for me:
class SecurityLayer {
private static var authorized: Bool = false
static func makeAuthorizeCheck() -> API2? {
if authorized {
return API2()
}
return nil
}
}
Second class (not subclass)
class Secret {
func test() {
print("test")
}
fileprivate init() {
}
}
Examples
SecurityLayer.makeAuthorizeCheck()?.test() //working
Secret() //forbidden
Secret.test() //compiler find this method, but there are no permissions to use this one
When the constructor inside Secret is private this wouldn't work anymore. For me the benefit of fileprivate is obvious now.
!The classes have to be in one file!

Swift 3 nested functions vs closures

I have a large method that does some loading and calculating so it shows an activity indicator view to inform the users they should wait. The logic is pretty complex so there are 4 places in which the data processing might break or return (everything is done on closures). Anyway, I didn't want to repeat this code:
DispatchQueue.main.async {
activityView.hide()
activityView.removeFromSuperview()
}
in 4 places so I figured that I would write a nested function:
func removeActivityView() {
DispatchQueue.main.async {
activityView.hide()
activityView.removeFromSuperview()
}
}
but then I realised that in Swift I could also do:
let removeActivityView = {
DispatchQueue.main.async {
activityView.hide()
activityView.removeFromSuperview()
}
}
which is used exactly in the same way and does exactly the same from the user's point of view.
So what is the actual difference between one approach and the other?
They are the same in this case. In Swift:
Nested functions are closures that have a name and can capture values from their enclosing function.
Source
In fact, you could also do:
func foo() {
print("Foo!")
}
let bar = foo
Now foo() and bar() would yield the same result. This can be done for any function that takes in no arguments.
I'm not sure how/if the compiler differentiates these two. If anyone has more information with respect to that, I would be very interested!

Wait for Parse Async functions to complete in Swift

I'm trying to wait for Parse async functions in Swift to reload my UITableView
I'm not sure if Completion Handler is useful in this case. or Dispatch Async.
I'm really confused ! Can someone help out with this
var posts = [PFObject]()
for post in posts {
post.fetchInBackground()
}
tableView.reloadData() // I want to execute that when the async functions have finished execution
You want to use fetchAllInBackground:Block I've had issues launching a bunch of parse calls in a loop where it will take a lot longer to return all of them than expected.
fetch documentation
It should look something like this:
PFObject.fetchAllInBackground(posts, block: { (complete, error) in
if (error == nil && complete) {
self.tableView.reloadData()
}
})
One thing to note is that in your example posts are empty and a generic PFObject. I'm assuming this is just for the example. Otherwise if you want to get all posts in Parse (as opposed to updating current ones) you will want to use PFQuery instead of fetching. query documentation
You need to use fetchInBackgroundWithBlock. Alternatively, if you want to wait until all have loaded and then update the UI, use PFObject's +fetchAllInBackground:block:. Note that this is a class method, and would therefore be called as PFObject.fetchAllInBackground(.... See documentation here.
Either way, because you're running in a background thread, you must update the UI on the main thread. This is normally done using dispatch_async.
The other thing to watch out for is if you run fetchInBackgroundWithBlock in a loop and collect all the results in an array, arrays are not thread safe. You will have to use something like dispatch_barrier or your own synchronous queue to synchronise access to the array. Code for the second option is below:
// Declared once and shared by each call (set your own name)...
let queue = dispatch_queue_create("my.own.queue", nil)
// For each call...
dispatch_sync(queue) {
self.myArray.append(myElement)
}
Here's a little class I made to help with coordination of asynchronous processes:
class CompletionBlock
{
var completionCode:()->()
init?(_ execute:()->() )
{ completionCode = execute }
func deferred() {}
deinit
{ completionCode() }
}
The trick is to create an instance of CompletionBlock with the code you want to execute after the last asynchronous block and make a reference to the object inside the closures.
let reloadTable = CompletionBlock({ self.tableView.reloadData() })
var posts = [PFObject]()
for post in posts
{
post.fetchInBackground(){ reloadTable.deferred() }
}
The object will remain "alive" until the last capture goes out of scope. Then the object itself will go out of scope and its deinit will be called executing your finalization code at that point.
Here is an example of using fetchInBackgroundWithBlock which reloads a tableView upon completion
var myArray = [String]()
func fetchData() {
let userQuery: PFQuery = PFUser.query()!
userQuery.findObjectsInBackgroundWithBlock({
(users, error) -> Void in
var userData = users!
if error == nil {
if userData.count >= 1 {
for i in 0...users!.count-1 {
self.myArray.append(userData[i].valueForKey("dataColumnInParse") as! String)
}
}
self.tableView.reloadData()
} else {
print(error)
}
})
}
My example is a query on the user class but you get the idea...
I have experimented a bit with the blocks and they seem to get called on the main thread, which means that any UI changes can be made there. The code I have used to test looks something like this:
func reloadPosts() {
PFObject.fetchAllIfNeededInBackground(posts) {
[unowned self] (result, error) in
if let err = error {
self.displayError(err)
}
self.tableView.reloadData()
}
}
if you are in doubt about whether or not the block is called on the main thread you can use the NSThread class to check for this
print(NSThread.currentThread().isMainThread)
And if you want it to be bulletproof you can wrap your reloadData inside dispatch_block_tto ensure it is on the main thread
Edit:
The documentation doesn't state anywhere if the block is executed on the main thread, but the source code is pretty clear that it does
+ (void)fetchAllIfNeededInBackground:(NSArray *)objects block:(PFArrayResultBlock)block {
[[self fetchAllIfNeededInBackground:objects] thenCallBackOnMainThreadAsync:block];
}