Swift protocol extension implementing another protocol with shared associated type - swift

Consider the following:
protocol Foo {
typealias A
func hello() -> A
}
protocol FooBar: Foo {
func hi() -> A
}
extension FooBar {
func hello() -> A {
return hi()
}
}
class FooBarClass: FooBar {
typealias A = String
func hi() -> String {
return "hello world"
}
}
This code compiles. But if I comment out explicit definition of associated type typealias A = String, then for some reason, swiftc fails to infer the type.
I'm sensing this has to do with two protocols sharing the same associated type but without a direct assertion through, for example, type parameterization (maybe associated type is not powerful/mature enough?), which makes it ambiguous for type inference.
I'm not sure if this is a bug / immaturity of the language, or maybe, I'm missing some nuances in protocol extension which rightfully lead to this behaviour.
Can someone shed some light on this?

look at this example
protocol Foo {
typealias A
func hello() -> A
}
protocol FooBar: Foo {
typealias B
func hi() -> B
}
extension FooBar {
func hello() -> B {
return hi()
}
}
class FooBarClass: FooBar {
//typealias A = String
func hi() -> String {
return "hello world"
}
}
with generics
class FooBarClass<T>: FooBar {
var t: T?
func hi() -> T? {
return t
}
}
let fbc: FooBarClass<Int> = FooBarClass()
fbc.t = 10
fbc.hello() // 10
fbc.hi() // 10

Providing explicit values for associated types in a protocol is required for conformance to said protocol. This can be accomplished by hard coding a type, as you've done with typealias A = String, or using a parameterized type as you mentioned, such as below:
class FooBarClass<T>: FooBar {
typealias A = T
...
}
Swift will not infer your associated type from an implemented method of the protocol, as there could be ambiguity with multiple methods with mismatching types. This is why the typealias must be explicitly resolved in your implementing class.

Related

Specialize generic function requirement on protocol inheritance

I have some protocol hierarchies on my code where I have protocols defining the objects I use and protocols defining functions to use with this objects.
The object protocols are inherited by other object protocols that add more functionality to the original protocols and so are the functions that use them. The problem is that I can't find a way to specialize the function to take only the inherited parameter.
Here's some code to clarify what I'm trying to do:
protocol A {
var foo: String { get set }
}
protocol B: A {
var bar: String { get set }
}
struct Test: B {
var foo: String = "foo"
var bar: String = "bar"
}
protocol UseAProtocol {
static func use<T: A>(_ obj: T)
}
protocol UseBProtocol: UseAProtocol {
}
extension UseBProtocol {
//If I change the requirement to <T: B> this won't conform to `UseAProtocol`.
static func use<T: A>(_ obj: T) {
print(obj.foo)
// print(obj.bar) - Since obj does not conform to `B` I can't access ".bar" here without a forced casting.
}
}
struct Manager: UseBProtocol {
}
Manager.use(Test())
What I want to do is make the use function on the UseBProtocol only accept objects that conform to B. B inherits from A, but when I change from <T:A> to <T:B> I got an error saying that Manager does not conform to UseAProtocol and I have to change it back to <T:A>.
I know I can do this using associatedtype and where clauses on the inherit protocols - that's what I use today - but I wanted to move the generic requirement to the method so I could group all of them together under the same struct (I have a lot of this hierarchies and by using associatedtype I must use one struct by hierarchy). When the Conditional Conformances came to Swift this would be possible with associatedtype, but until them...
I could also use as! to force the casting from A to B on the UseBProtocol implementation, but that's a really bad solution and the error would be throw only at runtime.
Is there any way to achieve what I'm looking for?
It seems like what you are actually looking for is an associatedType in UseAProtocol rather than making the use function generic.
By declaring an associated type in UseAProtocol and changing the function signature of use to static func use(_ obj: ProtocolType) your code compiles fine and you can access both foo and bar from Manager.
protocol AProtocol {
var foo: String { get set }
}
protocol BProtocol: AProtocol {
var bar: String { get set }
}
struct Test: BProtocol {
var foo: String = "foo"
var bar: String = "bar"
}
protocol UseAProtocol {
associatedtype ProtocolType
static func use(_ obj: ProtocolType)
}
protocol UseBProtocol: UseAProtocol {
}
extension UseBProtocol {
static func use(_ obj: BProtocol) {
print(obj.foo)
print(obj.bar)
}
}
struct Manager: UseBProtocol {
}
Manager.use(Test()) //prints both "foo" and "bar"

Extending custom type where associated type is equal to Void

I'm in a situation where I have a custom type that contains an associatedtype. In the case where this is equal to Void, I would like to have some default behaviour (to make the call-site more convenient). I tried to boil the example down to:
protocol FooType {
associatedtype T: Any
var bar: (String) -> T { get }
}
struct Foo<T>: FooType {
let bar: (String) -> T
}
extension Foo where T == Void { // Compile error: "Same-type requirement makes generic parameter 'T' non-generic".
init() {
self.bar = { _ in return }
}
}
The idea is that, in the cases where the generic type is Void, it doesn't make sense (in my scenario) to pass in a function (named bar in the example). Therefore, I just want a default implementation for this function in this specific context.
When trying to do the above I get the Same-type requirement makes generic parameter 'T' non-generic which sounds very similar to what happens when one tries to restrict e.g. the Array type when containing specific types. A workaround for this is to introduce a protocol, but I cannot do that for Void. Is it possible to do what I want or is this currently a limitation in Swift 3?
As of Swift 3.1, the code posted in the question now works. That is, the following now works as wanted:
protocol FooType {
associatedtype T: Any
var bar: (String) -> T { get }
}
struct Foo<T>: FooType {
let bar: (String) -> T
}
extension Foo where T == Void {
init() {
self.bar = { _ in return }
}
}
let foo = Foo<String>(bar: { (t: String) in return "" })
let zoo = Foo<Void>()

How do I declare a generic function in a protocol that returns self? [duplicate]

I have a protocol P that returns a copy of the object:
protocol P {
func copy() -> Self
}
and a class C that implements P:
class C : P {
func copy() -> Self {
return C()
}
}
However, whether I put the return value as Self I get the following error:
Cannot convert return expression of type 'C' to return type 'Self'
I also tried returning C.
class C : P {
func copy() -> C {
return C()
}
}
That resulted in the following error:
Method 'copy()' in non-final class 'C' must return Self to conform
to protocol 'P'
Nothing works except for the case where I prefix class C with final ie do:
final class C : P {
func copy() -> C {
return C()
}
}
However if I want to subclass C then nothing would work. Is there any way around this?
The problem is that you're making a promise that the compiler can't prove you'll keep.
So you created this promise: Calling copy() will return its own type, fully initialized.
But then you implemented copy() this way:
func copy() -> Self {
return C()
}
Now I'm a subclass that doesn't override copy(). And I return a C, not a fully-initialized Self (which I promised). So that's no good. How about:
func copy() -> Self {
return Self()
}
Well, that won't compile, but even if it did, it'd be no good. The subclass may have no trivial constructor, so D() might not even be legal. (Though see below.)
OK, well how about:
func copy() -> C {
return C()
}
Yes, but that doesn't return Self. It returns C. You're still not keeping your promise.
"But ObjC can do it!" Well, sort of. Mostly because it doesn't care if you keep your promise the way Swift does. If you fail to implement copyWithZone: in the subclass, you may fail to fully initialize your object. The compiler won't even warn you that you've done that.
"But most everything in ObjC can be translated to Swift, and ObjC has NSCopying." Yes it does, and here's how it's defined:
func copy() -> AnyObject!
So you can do the same (there's no reason for the ! here):
protocol Copyable {
func copy() -> AnyObject
}
That says "I'm not promising anything about what you get back." You could also say:
protocol Copyable {
func copy() -> Copyable
}
That's a promise you can make.
But we can think about C++ for a little while and remember that there's a promise we can make. We can promise that we and all our subclasses will implement specific kinds of initializers, and Swift will enforce that (and so can prove we're telling the truth):
protocol Copyable {
init(copy: Self)
}
class C : Copyable {
required init(copy: C) {
// Perform your copying here.
}
}
And that is how you should perform copies.
We can take this one step further, but it uses dynamicType, and I haven't tested it extensively to make sure that is always what we want, but it should be correct:
protocol Copyable {
func copy() -> Self
init(copy: Self)
}
class C : Copyable {
func copy() -> Self {
return self.dynamicType(copy: self)
}
required init(copy: C) {
// Perform your copying here.
}
}
Here we promise that there is an initializer that performs copies for us, and then we can at runtime determine which one to call, giving us the method syntax you were looking for.
With Swift 2, we can use protocol extensions for this.
protocol Copyable {
init(copy:Self)
}
extension Copyable {
func copy() -> Self {
return Self.init(copy: self)
}
}
There is another way to do what you want that involves taking advantage of Swift's associated type. Here's a simple example:
public protocol Creatable {
associatedtype ObjectType = Self
static func create() -> ObjectType
}
class MyClass {
// Your class stuff here
}
extension MyClass: Creatable {
// Define the protocol function to return class type
static func create() -> MyClass {
// Create an instance of your class however you want
return MyClass()
}
}
let obj = MyClass.create()
Actually, there is a trick that allows to easily return Self when required by a protocol (gist):
/// Cast the argument to the infered function return type.
func autocast<T>(some: Any) -> T? {
return some as? T
}
protocol Foo {
static func foo() -> Self
}
class Vehicle: Foo {
class func foo() -> Self {
return autocast(Vehicle())!
}
}
class Tractor: Vehicle {
override class func foo() -> Self {
return autocast(Tractor())!
}
}
func typeName(some: Any) -> String {
return (some is Any.Type) ? "\(some)" : "\(some.dynamicType)"
}
let vehicle = Vehicle.foo()
let tractor = Tractor.foo()
print(typeName(vehicle)) // Vehicle
print(typeName(tractor)) // Tractor
Swift 5.1 now allow a forced cast to Self, as! Self
1> protocol P {
2. func id() -> Self
3. }
9> class D : P {
10. func id() -> Self {
11. return D()
12. }
13. }
error: repl.swift:11:16: error: cannot convert return expression of type 'D' to return type 'Self'
return D()
^~~
as! Self
9> class D : P {
10. func id() -> Self {
11. return D() as! Self
12. }
13. } //works
Following on Rob's suggestion, this could be made more generic with associated types. I've changed the example a bit to demonstrate the benefits of the approach.
protocol Copyable: NSCopying {
associatedtype Prototype
init(copy: Prototype)
init(deepCopy: Prototype)
}
class C : Copyable {
typealias Prototype = C // <-- requires adding this line to classes
required init(copy: Prototype) {
// Perform your copying here.
}
required init(deepCopy: Prototype) {
// Perform your deep copying here.
}
#objc func copyWithZone(zone: NSZone) -> AnyObject {
return Prototype(copy: self)
}
}
I had a similar problem and came up with something that may be useful so I though i'd share it for future reference because this is one of the first places I found when searching for a solution.
As stated above, the problem is the ambiguity of the return type for the copy() function. This can be illustrated very clearly by separating the copy() -> C and copy() -> P functions:
So, assuming you define the protocol and class as follows:
protocol P
{
func copy() -> P
}
class C:P
{
func doCopy() -> C { return C() }
func copy() -> C { return doCopy() }
func copy() -> P { return doCopy() }
}
This compiles and produces the expected results when the type of the return value is explicit. Any time the compiler has to decide what the return type should be (on its own), it will find the situation ambiguous and fail for all concrete classes that implement the P protocol.
For example:
var aC:C = C() // aC is of type C
var aP:P = aC // aP is of type P (contains an instance of C)
var bC:C // this to test assignment to a C type variable
var bP:P // " " " P " "
bC = aC.copy() // OK copy()->C is used
bP = aC.copy() // Ambiguous.
// compiler could use either functions
bP = (aC as P).copy() // but this resolves the ambiguity.
bC = aP.copy() // Fails, obvious type incompatibility
bP = aP.copy() // OK copy()->P is used
In conclusion, this would work in situations where you're either, not using the base class's copy() function or you always have explicit type context.
I found that using the same function name as the concrete class made for unwieldy code everywhere, so I ended up using a different name for the protocol's copy() function.
The end result is more like:
protocol P
{
func copyAsP() -> P
}
class C:P
{
func copy() -> C
{
// there usually is a lot more code around here...
return C()
}
func copyAsP() -> P { return copy() }
}
Of course my context and functions are completely different but in spirit of the question, I tried to stay as close to the example given as possible.
Just throwing my hat into the ring here. We needed a protocol that returned an optional of the type the protocol was applied on. We also wanted the override to explicitly return the type, not just Self.
The trick is rather than using 'Self' as the return type, you instead define an associated type which you set equal to Self, then use that associated type.
Here's the old way, using Self...
protocol Mappable{
static func map() -> Self?
}
// Generated from Fix-it
extension SomeSpecificClass : Mappable{
static func map() -> Self? {
...
}
}
Here's the new way using the associated type. Note the return type is explicit now, not 'Self'.
protocol Mappable{
associatedtype ExplicitSelf = Self
static func map() -> ExplicitSelf?
}
// Generated from Fix-it
extension SomeSpecificClass : Mappable{
static func map() -> SomeSpecificClass? {
...
}
}
To add to the answers with the associatedtype way, I suggest to move the creating of the instance to a default implementation of the protocol extension. In that way the conforming classes won't have to implement it, thus sparing us from code duplication:
protocol Initializable {
init()
}
protocol Creatable: Initializable {
associatedtype Object: Initializable = Self
static func newInstance() -> Object
}
extension Creatable {
static func newInstance() -> Object {
return Object()
}
}
class MyClass: Creatable {
required init() {}
}
class MyOtherClass: Creatable {
required init() {}
}
// Any class (struct, etc.) conforming to Creatable
// can create new instances without having to implement newInstance()
let instance1 = MyClass.newInstance()
let instance2 = MyOtherClass.newInstance()

Default implementation of protocol extension in Swift not working

I'm trying to add functionality to an NSManagedObject via a protocol. I added a default implementation which works fine, but as soon as I try to extend my subclass with the protocol it tells me that parts of it are not implemented, even though I added the default implementation.
Anyone having Ideas of what I'm doing wrong?
class Case: NSManagedObject {
}
protocol ObjectByIdFetchable {
typealias T
typealias I
static var idName: String { get }
static func entityName() -> String
static func objectWithId(ids:[I], context: NSManagedObjectContext) -> [T]
}
extension ObjectByIdFetchable where T: NSManagedObject, I: AnyObject {
static func objectWithId(ids:[I], context: NSManagedObjectContext) -> [T] {
let r = NSFetchRequest(entityName: self.entityName())
r.predicate = NSPredicate(format: "%K IN %#", idName, ids)
return context.typedFetchRequest(r)
}
}
extension Case: ObjectByIdFetchable {
typealias T = Case
typealias I = Int
class var idName: String {
return "id"
}
override class func entityName() -> String {
return "Case"
}
}
The error I get is Type Case doesn't conform to protocol ObjectByIdFetchable
Help very much appreciated.
We'll use a more scaled-down example (below) to shed light on what goes wrong here. The key "error", however, is that Case cannot make use of the default implementation of objectWithId() for ... where T: NSManagedObject, I: AnyObject; since type Int does not conform to the type constraint AnyObject. The latter is used to represent instances of class types, whereas Int is a value type.
AnyObject can represent an instance of any class type.
Any can represent an instance of any type at all, including function types.
From the Language Guide - Type casting.
Subsequently, Case does not have access to any implementation of the blueprinted objectWithId() method, and does hence not conform to protocol ObjectByIdFetchable.
Default extension of Foo to T:s conforming to Any works, since Int conforms to Any:
protocol Foo {
typealias T
static func bar()
static func baz()
}
extension Foo where T: Any {
static func bar() { print ("bar") }
}
class Case : Foo {
typealias T = Int
class func baz() {
print("baz")
}
}
The same is, however, not true for extending Foo to T:s conforming to AnyObject, as Int does not conform to the class-type general AnyObject:
protocol Foo {
typealias T
static func bar()
static func baz()
}
/* This will not be usable by Case below */
extension Foo where T: AnyObject {
static func bar() { print ("bar") }
}
/* Hence, Case does not conform to Foo, as it contains no
implementation for the blueprinted method bar() */
class Case : Foo {
typealias T = Int
class func baz() {
print("baz")
}
}
Edit addition: note that if you change (as you've posted in you own answer)
typealias T = Int
into
typealias T = NSNumber
then naturally Case has access to the default implementation of objectWithId() for ... where T: NSManagedObject, I: AnyObject, as NSNumber is class type, which conforms to AnyObject.
Finally, note from the examples above that the keyword override is not needed for implementing methods blueprinted in a protocol (e.g., entityName() method in your example above). The extension of Case is an protocol extension (conforming to ObjectByIdFetchable by implementing blueprinted types and methods), and not really comparable to subclassing Case by a superclass (in which case you might want to override superclass methods).
I found the solution to the problem. I thought it's the typealias T which is the reason for not compiling. That's actually not true, it's I which I said to AnyObject, the interesting thing is that Int is not AnyObject. I had to change Int to NSNumber

Can't create an Array of types conforming to a Protocol in Swift

I have the following protocol and a class that conforms to it:
protocol Foo{
typealias BazType
func bar(x:BazType) ->BazType
}
class Thing: Foo {
func bar(x: Int) -> Int {
return x.successor()
}
}
When I try to create an Array of foos, I get an odd error:
var foos: Array<Foo> = [Thing()]
Protocol Foo can only be used as a generic constraint because it has
Self or associated type requirements.
OK, so it can only be used if it has an associated type requirement (which it does), but for some reason this is an error?? WTF?!
I'm not sure I fully understand what the compiler is trying to tell me...
Let's say, if we could put an instance of Thing into array foos, what will happen?
protocol Foo {
associatedtype BazType
func bar(x:BazType) -> BazType
}
class Thing: Foo {
func bar(x: Int) -> Int {
return x.successor()
}
}
class AnotherThing: Foo {
func bar(x: String) -> String {
return x
}
}
var foos: [Foo] = [Thing()]
Because AnotherThing conforms to Foo too, so we can put it into foos also.
foos.append(AnotherThing())
Now we grab a foo from foos randomly.
let foo = foos[Int(arc4random_uniform(UInt32(foos.count - 1)))]
and I'm going to call method bar, can you tell me that I should send a string or an integer to bar?
foo.bar("foo") or foo.bar(1)
Swift can't.
So it can only be used as a generic constraint.
What scenario requires a protocol like this?
Example:
class MyClass<T: Foo> {
let fooThing: T?
init(fooThing: T? = nil) {
self.fooThing = fooThing
}
func myMethod() {
let thing = fooThing as? Thing // ok
thing?.bar(1) // fine
let anotherThing = fooThing as? AnotherThing // no problem
anotherThing?.bar("foo") // you can do it
// but you can't downcast it to types which doesn't conform to Foo
let string = fooThing as? String // this is an error
}
}
I have been playing with your code trying to understand how to implement the protocol. I found that you can't use Typealias as a generic type because it is just an alias not a type by itself. So if you declare the Typealias outside your protocol and your class you can effectively use it in your code without any problem.
Note: the Typealias has the Int type in its declaration, that way you can always use the alias instead of the Int type and use all of its associated methods and functions.
Here's how I make it work:
typealias BazType = Int
protocol Foo{
func bar(x:BazType) -> BazType
}
class Thing: Foo {
func bar(x: BazType) -> BazType {
return x.successor()
}
}
let elements: Array<Foo> = [Thing(), Thing()]