Vectorization in PCA - matlab

i am doing Principal Component Analysis,and want help to know if can represent
summation from i to m (X(i)*X(i)^T) in terms of data matrix..direct multiplication of two matrices.
Can this be done..or need i use a for loop and do it.
Currently i have tried
sum=zeros(n,n);
for i=1:m
sum=sum+ X(i,:)*(X(i,:)^T);
end
My goal is to find the principal eigen values of the resulting matrix.
Thanks in advance

Say the shape of the data matrix X is (Dim, Num), you can just compute sum of all sample correlations with:
S = X*X'
For implementing PCA, also don't forget to divide the matrix by the amount of samples.
Sigma = (1/N)X*X'
If your data has zero mean, this is also the covariance matrix.

Related

Problem of difference in between matrix multiplication done by * and by components by components by hand (MATLAB)

I have a problem with the accuracy of matrix multiplication on Matlab. I will explain this with an example.
Let
A=[0.1256, 0.25789; 0.00018, 0.68741];
B=[0.1578, 0.24471; 0.12801, 0.99701];
s=0;
while s<100
for i=1:2
for j=1:2
A(i,j)=A(i,j)+0.0125;
B(i,j)=B(i,j)+0.2470;
end
end
D=A*B;
d11=A(1,1)*B(1,1)+A(1,2)*B(1,2);
d12=A(1,1)*B(1,2)+A(1,2)*B(2,2);
d21=A(2,1)*B(1,1)+A(2,2)*B(1,2);
d22=A(2,1)*B(2,1)+A(2,2)*B(2,2);
DD=[d11, d12; d21, d22];
s=s+1;
end
I have an algorithm where the values of matrix A and B components are upgraded at each iteration. In this algorithm, there is also a formula that involves the definition of a matrix as the product of the upgraded A and B.
My problem is if I define at each iteration these new matrix components by components executing by hand the matrix multiplication I would obtain a result slight different with respect to the case I define this new matrix by execution of matrix multiplication done by Matlab by "*" and not components by components by me.
The final result is:
DD=[71,8082684418998, 73,0622074848998;
79,4048550050998, 80,8251256858998]
and
D=[71,6322976788998 73,0622074848998
79,1787592580998 80,9710216918998]
Can it be possible? Thanks in advance
This has not to do with numerical accuracy, but your manual matrix multiplication is wrong. This would be the correct version:
d11=A(1,1)*B(1,1)+A(1,2)*B(2,1);
d12=A(1,1)*B(1,2)+A(1,2)*B(2,2);
d21=A(2,1)*B(1,1)+A(2,2)*B(2,1);
d22=A(2,1)*B(1,2)+A(2,2)*B(2,2);
But you see that it is easy to make mistakes in this manual matrix multiplication, so best to just do A*B.

PCA for dimensionality reduction MATLAB

I have a feature vector of size [4096 x 180], where 180 is the number of samples and 4096 is the feature vector length of each sample.
I want to reduce the dimensionality of the data using PCA.
I tried using the built in pca function of MATLAB [V U]=pca(X) and reconstructed the data by X_rec= U(:, 1:n)*V(:, 1:n)', n being the dimension I chose. This returns a matrix of 4096 x 180.
Now I have 3 questions:
How to obtain the reduced dimension?
When I put n as 200, it gave an error as matrix dimension increased, which gave me the assumption that we cannot reduce dimension lesser than the sample size. Is this true?
How to find the right number of reduced dimensions?
I have to use the reduced dimension feature set for further classification.
If anyone can provide a detailed step by step explanation of the pca code for this I would be grateful. I have looked at many places but my confusion still persists.
You may want to refer to Matlab example to analyse city data.
Here is some simplified code:
load cities;
[~, pca_scores, ~, ~, var_explained] = pca(ratings);
Here, pca_scores are the pca components with respective variances of each component in var_explained. You do not need to do any explicit multiplication after running pca. Matlab will give you the components directly.
In your case, consider that data X is a 4096-by-180 matrix, i.e. you have 4096 samples and 180 features. Your goal is to reduce dimensionality such that you have p features, where p < 180. In Matlab, you can simply run the following,
p = 100;
[~, pca_scores, ~, ~, var_explained] = pca(X, 'NumComponents', p);
pca_scores will be a 4096-by-p matrix and var_explained will be a vector of length p.
To answer your questions:
How to obtain the reduced dimension? I above example, pca_scores is your reduced dimension data.
When I put n as 200, it gave an error as matrix dimension increased, which gave me the assumption that we cannot reduce dimension lesser than the sample size. Is this true? You can't use 200, since the reduced dimensions have to be less than 180.
How to find the right number of reduced dimensions? You can make this decision by checking the var_explained vector. Typically you want to retain about 99% variance of the features. You can read more about this here.

Generate random samples from arbitrary discrete probability density function in Matlab

I've got an arbitrary probability density function discretized as a matrix in Matlab, that means that for every pair x,y the probability is stored in the matrix:
A(x,y) = probability
This is a 100x100 matrix, and I would like to be able to generate random samples of two dimensions (x,y) out of this matrix and also, if possible, to be able to calculate the mean and other moments of the PDF. I want to do this because after resampling, I want to fit the samples to an approximated Gaussian Mixture Model.
I've been looking everywhere but I haven't found anything as specific as this. I hope you may be able to help me.
Thank you.
If you really have a discrete probably density function defined by A (as opposed to a continuous probability density function that is merely described by A), you can "cheat" by turning your 2D problem into a 1D problem.
%define the possible values for the (x,y) pair
row_vals = [1:size(A,1)]'*ones(1,size(A,2)); %all x values
col_vals = ones(size(A,1),1)*[1:size(A,2)]; %all y values
%convert your 2D problem into a 1D problem
A = A(:);
row_vals = row_vals(:);
col_vals = col_vals(:);
%calculate your fake 1D CDF, assumes sum(A(:))==1
CDF = cumsum(A); %remember, first term out of of cumsum is not zero
%because of the operation we're doing below (interp1 followed by ceil)
%we need the CDF to start at zero
CDF = [0; CDF(:)];
%generate random values
N_vals = 1000; %give me 1000 values
rand_vals = rand(N_vals,1); %spans zero to one
%look into CDF to see which index the rand val corresponds to
out_val = interp1(CDF,[0:1/(length(CDF)-1):1],rand_vals); %spans zero to one
ind = ceil(out_val*length(A));
%using the inds, you can lookup each pair of values
xy_values = [row_vals(ind) col_vals(ind)];
I hope that this helps!
Chip
I don't believe matlab has built-in functionality for generating multivariate random variables with arbitrary distribution. As a matter of fact, the same is true for univariate random numbers. But while the latter can be easily generated based on the cumulative distribution function, the CDF does not exist for multivariate distributions, so generating such numbers is much more messy (the main problem is the fact that 2 or more variables have correlation). So this part of your question is far beyond the scope of this site.
Since half an answer is better than no answer, here's how you can compute the mean and higher moments numerically using matlab:
%generate some dummy input
xv=linspace(-50,50,101);
yv=linspace(-30,30,100);
[x y]=meshgrid(xv,yv);
%define a discretized two-hump Gaussian distribution
A=floor(15*exp(-((x-10).^2+y.^2)/100)+15*exp(-((x+25).^2+y.^2)/100));
A=A/sum(A(:)); %normalized to sum to 1
%plot it if you like
%figure;
%surf(x,y,A)
%actual half-answer starts here
%get normalized pdf
weight=trapz(xv,trapz(yv,A));
A=A/weight; %A normalized to 1 according to trapz^2
%mean
mean_x=trapz(xv,trapz(yv,A.*x));
mean_y=trapz(xv,trapz(yv,A.*y));
So, the point is that you can perform a double integral on a rectangular mesh using two consecutive calls to trapz. This allows you to compute the integral of any quantity that has the same shape as your mesh, but a drawback is that vector components have to be computed independently. If you only wish to compute things which can be parametrized with x and y (which are naturally the same size as you mesh), then you can get along without having to do any additional thinking.
You could also define a function for the integration:
function res=trapz2(xv,yv,A,arg)
if ~isscalar(arg) && any(size(arg)~=size(A))
error('Size of A and var must be the same!')
end
res=trapz(xv,trapz(yv,A.*arg));
end
This way you can compute stuff like
weight=trapz2(xv,yv,A,1);
mean_x=trapz2(xv,yv,A,x);
NOTE: the reason I used a 101x100 mesh in the example is that the double call to trapz should be performed in the proper order. If you interchange xv and yv in the calls, you get the wrong answer due to inconsistency with the definition of A, but this will not be evident if A is square. I suggest avoiding symmetric quantities during the development stage.

it is possible determinant of matrix(256*256) be infinite

i have (256*1) vectors of feature come from (16*16) of gray images. number of vectors is 550
when i compute Sample covariance of this vectors and compute covariance matrix determinant
answer is inf
it is possible determinant of finite matrix with finite range (0:255) value be infinite or i mistake some where?
in fact i want classification with bayesian estimation , my distribution is gaussian and when
i compute determinant be inf and ultimate Answer(likelihood) is zero .
some part of my code:
Mean = mean(dataSet,2);
MeanMatrix = Mean*ones(1,NoC);
Xc = double(dataSet)-MeanMatrix; % transform data to the origine
Sigma = (1/NoC) *Xc*Xc'; % calculate sample covariance matrix
Parameters(i).M = Mean';
Parameters(i).C = Sigma;
likelihoods(i) = (1/(2*pi*sqrt(det(params(i).C)))) * (exp(-0.5 * (double(X)-params(i).M)' * inv(params(i).C) * (double(X)-params(i).M)));
variable i show my classes;
variable X show my feature vector;
Can the determinant of such matrix be infinite? No it cannot.
Can it evaluate as infinite? Yes definitely.
Here is an example of a matrix with a finite amount of elements, that are not too big, yet the determinant will rarely evaluate as a finite number:
det(rand(255)*255)
In your case, probably what is happening is that you have too few datapoints to produce a full-rank covariance matrix.
For instance, if you have N examples, each with dimension d, and N<d, then your d x d covariance matrix will not be full rank and will have a determinant of zero.
In this case, a matrix inverse (precision matrix) does not exist. However, attempting to compute the determinant of the inverse (by taking 1/|X'*X|=1/0 -> \infty) will produce an infinite value.
One way to get around this problem is to set the covariance to X'*X+eps*eye(d), where eps is a small value. This technique corresponds to placing a weak prior distribution on elements of X.
no it is not possible. it may be singular but taking elements a large value has will have a determinant value.

Multivariate Random Number Generation in Matlab

I'm probably being a little dense but I'm not very mathsy and can't seem to understand the covariance element of creating multivariate data.
I'm after two columns of random data (representing two correlated variables).
I think I am right in needing to use the mvnrnd function and I understand that 'mu' must be a column of my mean vectors. As I need 4 distinct classes within my data these are going to be (1, 1) (-1 1) (1 -1) and (-1 -1). I assume I will have to do the function 4x with a different column of mean vectors each time and then combine them to get my full data set.
I don't understand what I should put for SIGMA - Matlab help tells me that it must be 'a d-by-d symmetric positive semi-definite matrix, or a d-by-d-by-n array' i.e. a covariance matrix. I don't understand how I create a covariance matrix for numbers that I am yet to generate.
Any advice would be greatly appreciated!
Assuming that I understood your case properly, I would go this way:
data = [normrnd(0,1,5000,1),normrnd(0,1,5000,1)]; %% your starting data series
MU = mean(data,1);
SIGMA = cov(data);
Now, it should be possible to feed mvnrnd with MU and SIGMA:
r = mvnrnd(MU,SIGMA,5000);
plot(r(:,1),r(:,2),'+') %% in case you wanna plot the results
I hope this helps.
I think your aim is to generate the simulated multivariate gaussian distributed data. For example, I use
k = 6; % feature dimension
mu = rand(1,k);
sigma = 10*eye(k,k);
unit matrix by 10 times is a symmetric positive semi-definite matrix. And the gaussian distribution will be more round than other type of sigma.
then you can use it as the above example of mvnrnd function and see the plot.