So, I've been trying to get off of the ground running Spark-scala. I've written a simple test program, which just extends the SparkPi example a bit :
def main(args: Array[String]): Unit = {
test()
}
def calcPi(spark: SparkContext, args: Array[String], numSlices: Long): Array[Double] = {
val start = System.nanoTime()
val slices = if (args.length > 0) args(0).toInt else 2
val n = math.min(numSlices * slices, Int.MaxValue).toInt // avoid overflow
val count = spark.parallelize(1 until n, slices).map { i =>
val x = random * 2 - 1
val y = random * 2 - 1
if (x*x + y*y < 1) 1 else 0
}.reduce(_ + _)
val piVal = 4.0 * count / n
println("Pi is roughly " + piVal)
spark.stop()
val end = System.nanoTime()
return Array(piVal, end - start, (piVal - Math.PI)/Math.PI)
}
def test(): Unit ={
val conf = new SparkConf().setAppName("Pi Test")
conf.setSparkHome("/usr/local/spark")
conf.setMaster("spark://<URL_OF_SPARK_CLUSTER>:7077")
conf.set("spark.executor.memory", "512m")
conf.set("spark.cores.max", "1")
conf.set("spark.blockManager.port", "33291")
conf.set("spark.executor.port", "33292")
conf.set("spark.broadcast.port", "33293")
conf.set("spark.fileserver.port", "33294")
conf.set("spark.driver.port", "33296")
conf.set("spark.replClassServer.port", "33297")
val sc = new SparkContext(conf)
val pi = calcPi(sc, Array(), 1000)
for(item <- pi) {
println(item)
}
}
I then made sure that ports 33291-33300 are open on my machine.
when I run the program, it succssfully hits the spark cluster, and seems to assign cores:
But when the program gets the point where it's actually running the hadoop job, the application logs say:
15/12/07 11:50:21 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at BotDetector.scala:49), which has no missing parents
15/12/07 11:50:21 INFO MemoryStore: ensureFreeSpace(1840) called with curMem=0, maxMem=2061647216
15/12/07 11:50:21 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1840.0 B, free 1966.1 MB)
15/12/07 11:50:21 INFO MemoryStore: ensureFreeSpace(1194) called with curMem=1840, maxMem=2061647216
15/12/07 11:50:21 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1194.0 B, free 1966.1 MB)
15/12/07 11:50:21 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.5.106:33291 (size: 1194.0 B, free: 1966.1 MB)
15/12/07 11:50:21 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:874
15/12/07 11:50:21 INFO DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at BotDetector.scala:49)
15/12/07 11:50:21 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
15/12/07 11:50:36 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
15/12/07 11:50:51 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
15/12/07 11:51:06 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
15/12/07 11:51:21 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
15/12/07 11:51:36 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
15/12/07 11:51:51 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
15/12/07 11:52:06 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
15/12/07 11:52:21 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
15/12/07 11:52:22 INFO AppClient$ClientActor: Executor updated: app-20151207175020-0003/0 is now EXITED (Command exited with code 1)
15/12/07 11:52:22 INFO SparkDeploySchedulerBackend: Executor app-20151207175020-0003/0 removed: Command exited with code 1
15/12/07 11:52:22 ERROR SparkDeploySchedulerBackend: Asked to remove non-existent executor 0
15/12/07 11:52:22 INFO AppClient$ClientActor: Executor added: app-20151207175020-0003/1 on worker-20151207173821-10.240.0.7-33295 (10.240.0.7:33295) with 5 cores
15/12/07 11:52:22 INFO SparkDeploySchedulerBackend: Granted executor ID app-20151207175020-0003/1 on hostPort 10.240.0.7:33295 with 5 cores, 512.0 MB RAM
15/12/07 11:52:22 INFO AppClient$ClientActor: Executor updated: app-20151207175020-0003/1 is now LOADING
15/12/07 11:52:23 INFO AppClient$ClientActor: Executor updated: app-20151207175020-0003/1 is now RUNNING
15/12/07 11:52:36 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
and when I go onto the remote server and look at the worker logs, they say:
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/hadoop/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hduser/apache-tez-0.7.0-src/tez-dist/target/tez-0.7.0/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
15/12/07 17:50:21 INFO executor.CoarseGrainedExecutorBackend: Registered signal handlers for [TERM, HUP, INT]
15/12/07 17:50:21 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/12/07 17:50:21 INFO spark.SecurityManager: Changing view acls to: hduser,jschirmer
15/12/07 17:50:21 INFO spark.SecurityManager: Changing modify acls to: hduser,jschirmer
15/12/07 17:50:21 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hduser, jschirmer); users with modify permissions: Set(hduser, jschirmer)
15/12/07 17:50:22 INFO slf4j.Slf4jLogger: Slf4jLogger started
15/12/07 17:50:22 INFO Remoting: Starting remoting
15/12/07 17:50:22 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://driverPropsFetcher#10.240.0.7:33292]
15/12/07 17:50:22 INFO util.Utils: Successfully started service 'driverPropsFetcher' on port 33292.
Exception in thread "main" java.lang.reflect.UndeclaredThrowableException
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1672)
at org.apache.spark.deploy.SparkHadoopUtil.runAsSparkUser(SparkHadoopUtil.scala:65)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$.run(CoarseGrainedExecutorBackend.scala:146)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$.main(CoarseGrainedExecutorBackend.scala:245)
at org.apache.spark.executor.CoarseGrainedExecutorBackend.main(CoarseGrainedExecutorBackend.scala)
Caused by: java.util.concurrent.TimeoutException: Futures timed out after [120 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
at scala.concurrent.Await$.result(package.scala:107)
at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:97)
at org.apache.spark.executor.CoarseGrainedExecutorBackend$$anonfun$run$1.apply$mcV$sp(CoarseGrainedExecutorBackend.scala:159)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:66)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:65)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
... 4 more
15/12/07 17:52:22 INFO util.Utils: Shutdown hook called
I've tried setting the driver and executor ports to explicitly open ports, with the same result. It's unclear what the problem is. Does anyone have any advice?
Also, note that if I compile this exact same code to a fat jar, and copy it to the remote server, and run it through spark-submit, then it runs successfully. I do have a yarn configuration defined on my server, and I'm open to running spark-yarn, but my understanding is that this cannot be done from a remote server, since you specify master as yarn-cluster, and there's no place to put the host in the config.
It seems you have firewall problem. First check you enabled all required port in your cluster or not then after there is some random ports in spark so you need fix those ports for your cluster then only you can use spark remotely.
Related
I am working with the following docker-compose image to build a spark standalone cluster:
---
# ----------------------------------------------------------------------------------------
# -- Docs: https://github.com/cluster-apps-on-docker/spark-standalone-cluster-on-docker --
# ----------------------------------------------------------------------------------------
version: "3.6"
volumes:
shared-workspace:
name: "hadoop-distributed-file-system"
driver: local
services:
jupyterlab:
image: andreper/jupyterlab:3.0.0-spark-3.0.0
container_name: jupyterlab
ports:
- 8888:8888
- 4040:4040
volumes:
- shared-workspace:/opt/workspace
spark-master:
image: andreper/spark-master:3.0.0
container_name: spark-master
ports:
- 8080:8080
- 7077:7077
volumes:
- shared-workspace:/opt/workspace
spark-worker-1:
image: andreper/spark-worker:3.0.0
container_name: spark-worker-1
environment:
- SPARK_WORKER_CORES=1
- SPARK_WORKER_MEMORY=512m
ports:
- 8081:8081
volumes:
- shared-workspace:/opt/workspace
depends_on:
- spark-master
spark-worker-2:
image: andreper/spark-worker:3.0.0
container_name: spark-worker-2
environment:
- SPARK_WORKER_CORES=1
- SPARK_WORKER_MEMORY=512m
ports:
- 8082:8081
volumes:
- shared-workspace:/opt/workspace
depends_on:
- spark-master
I followed this guide: https://towardsdatascience.com/apache-spark-cluster-on-docker-ft-a-juyterlab-interface-418383c95445.
Here can be found the Github repo: https://github.com/cluster-apps-on-docker/spark-standalone-cluster-on-docker
I can run the cluster and I can run code inside of the jupyter container, connecting to the master spark node without problems.
The problem starts when I want to run the spark code with spark submit. I really cannot understand how the cluster works. When I run inside the Jupyter container, I can quickly see where the scripts I create are, but I can't find them in the spark master container. If I check the docker-compose.yml, the volumes indicates that the folder where the scripts are stored is:
volumes:
- shared-workspace:/opt/workspace
But I cannot find this folder in any of the spark containers.
When I run, spark submit, I run it once I have executed inside of the Jupyter container. In the Jupyter container I have all the scripts that I am working with, but I have the doubt when I write the following command: spark submit --master spark:// spark-master:7077 <PATH to my python script>, the path of the python script, is the path where the script in Jupyter container or spark master container?
I can run the spark submit command without specifying the master, then it runs locally, and it runs without problems inside of the Jupyter container.
This is the python code I am executing:
from pyspark.sql import SparkSession
from pyspark import SparkContext, SparkConf
from os.path import expanduser, join, abspath
sparkConf = SparkConf()
sparkConf.setMaster("spark://spark-master:7077")
sparkConf.setAppName("pyspark-4")
sparkConf.set("spark.executor.memory", "2g")
sparkConf.set("spark.driver.memory", "2g")
sparkConf.set("spark.executor.cores", "1")
sparkConf.set("spark.driver.cores", "1")
sparkConf.set("spark.dynamicAllocation.enabled", "false")
sparkConf.set("spark.shuffle.service.enabled", "false")
sparkConf.set("spark.sql.warehouse.dir", warehouse_location)
spark = SparkSession.builder.config(conf=sparkConf).getOrCreate()
sc = spark.sparkContext
df = spark.createDataFrame(
[
(1, "foo"), # create your data here, be consistent in the types.
(2, "bar"),
],
["id", "label"], # add your column names here
)
print(df.show())
But when I specify the master= --master spark:// spark-master: 7077, and specifying the path where the script lives in the jupyter container:
spark-submit --master spark://spark-master:7077 test.py
ant this are the logs I receive:
21/06/06 21:32:04 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
21/06/06 21:32:08 INFO SparkContext: Running Spark version 3.0.0
21/06/06 21:32:09 INFO ResourceUtils: ==============================================================
21/06/06 21:32:09 INFO ResourceUtils: Resources for spark.driver:
21/06/06 21:32:09 INFO ResourceUtils: ==============================================================
21/06/06 21:32:09 INFO SparkContext: Submitted application: pyspark-4
21/06/06 21:32:09 INFO SecurityManager: Changing view acls to: root
21/06/06 21:32:09 INFO SecurityManager: Changing modify acls to: root
21/06/06 21:32:09 INFO SecurityManager: Changing view acls groups to:
21/06/06 21:32:09 INFO SecurityManager: Changing modify acls groups to:
21/06/06 21:32:09 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); groups with view permissions: Set(); users with modify permissions: Set(root); groups with modify permissions: Set()
21/06/06 21:32:12 INFO Utils: Successfully started service 'sparkDriver' on port 45627.
21/06/06 21:32:12 INFO SparkEnv: Registering MapOutputTracker
21/06/06 21:32:13 INFO SparkEnv: Registering BlockManagerMaster
21/06/06 21:32:13 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
21/06/06 21:32:13 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
21/06/06 21:32:13 INFO SparkEnv: Registering BlockManagerMasterHeartbeat
21/06/06 21:32:13 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-5a81855c-3160-49a5-b9f9-9cdfe6e5ca62
21/06/06 21:32:14 INFO MemoryStore: MemoryStore started with capacity 366.3 MiB
21/06/06 21:32:14 INFO SparkEnv: Registering OutputCommitCoordinator
21/06/06 21:32:16 INFO Utils: Successfully started service 'SparkUI' on port 4040.
21/06/06 21:32:16 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://3b232f9ed93b:4040
21/06/06 21:32:19 INFO StandaloneAppClient$ClientEndpoint: Connecting to master spark://spark-master:7077...
21/06/06 21:32:20 INFO TransportClientFactory: Successfully created connection to spark-master/172.21.0.5:7077 after 284 ms (0 ms spent in bootstraps)
21/06/06 21:32:23 INFO StandaloneSchedulerBackend: Connected to Spark cluster with app ID app-20210606213223-0000
21/06/06 21:32:23 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 46539.
21/06/06 21:32:23 INFO NettyBlockTransferService: Server created on 3b232f9ed93b:46539
21/06/06 21:32:23 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
21/06/06 21:32:23 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 3b232f9ed93b, 46539, None)
21/06/06 21:32:23 INFO BlockManagerMasterEndpoint: Registering block manager 3b232f9ed93b:46539 with 366.3 MiB RAM, BlockManagerId(driver, 3b232f9ed93b, 46539, None)
21/06/06 21:32:23 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 3b232f9ed93b, 46539, None)
21/06/06 21:32:23 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 3b232f9ed93b, 46539, None)
21/06/06 21:32:25 INFO StandaloneSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
21/06/06 21:32:29 INFO SharedState: Setting hive.metastore.warehouse.dir ('null') to the value of spark.sql.warehouse.dir ('/opt/workspace/spark-warehouse').
21/06/06 21:32:29 INFO SharedState: Warehouse path is '/opt/workspace/spark-warehouse'.
ESTOY AQUI¿¿
21/06/06 21:33:09 INFO CodeGenerator: Code generated in 1925.0009 ms
21/06/06 21:33:09 INFO SparkContext: Starting job: showString at NativeMethodAccessorImpl.java:0
21/06/06 21:33:09 INFO DAGScheduler: Got job 0 (showString at NativeMethodAccessorImpl.java:0) with 1 output partitions
21/06/06 21:33:09 INFO DAGScheduler: Final stage: ResultStage 0 (showString at NativeMethodAccessorImpl.java:0)
21/06/06 21:33:09 INFO DAGScheduler: Parents of final stage: List()
21/06/06 21:33:09 INFO DAGScheduler: Missing parents: List()
21/06/06 21:33:10 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[6] at showString at NativeMethodAccessorImpl.java:0), which has no missing parents
21/06/06 21:33:10 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 11.3 KiB, free 366.3 MiB)
21/06/06 21:33:11 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 5.9 KiB, free 366.3 MiB)
21/06/06 21:33:11 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 3b232f9ed93b:46539 (size: 5.9 KiB, free: 366.3 MiB)
21/06/06 21:33:11 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1200
21/06/06 21:33:11 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 0 (MapPartitionsRDD[6] at showString at NativeMethodAccessorImpl.java:0) (first 15 tasks are for partitions Vector(0))
21/06/06 21:33:11 INFO TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
21/06/06 21:33:26 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
21/06/06 21:33:41 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
21/06/06 21:33:56 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
21/06/06 21:34:11 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
21/06/06 21:34:26 WARN TaskSchedulerImpl: Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
When I execute the same code, inside of a jupyter notebook, it works without problems.
It is because the path that I have to indicate for the script, is the path where the script lives in the spark-master node? or I am confounding things here
I use
docker pull bitnami/spark
https://hub.docker.com/r/bitnami/spark
Spark 2.1.1 built for Hadoop 2.7.3
Scala 2.11.11
Cluster has 3 Linux RHEL 7.3 Azure VM's, running Spark Standalone Deploy Mode (no YARN or Mesos, yet)
I have created a very simple SparkStreaming job using IntelliJ, written in Scala. I'm using Maven and building the job into a fat/uber jar that contains all dependencies.
When I run the job locally it works fine. If I copy the jar to the cluster and run it with a master of local[2] it also works fine. However, if I submit the job to the cluster master it's like it does not want to schedule additional work beyond the first task. The job starts up, grabs however many events are in the Azure Event Hub, processes them successfully, then never does anymore work. It does not matter if I submit the job to the master as just an application or if it's submitted using supervised cluster mode, both do the same thing.
I've looked through all the logs I know of (master, driver (where applicable), and executor) and I am not seeing any errors or warnings that seem actionable. I've altered the log level, shown below, to show ALL/INFO/DEBUG and sifted through those logs without finding anything that seems relevant.
It may be worth noting that I had previously created several jobs that connect to Kafka, instead of the Azure Event Hub, using Java and those jobs run in supervised cluster mode without an issue on this same cluster. This leads me to believe that the cluster configuration isn't an issue, it's either something with my code (below) or the Azure Event Hub.
Any thoughts on where I might check next to isolate this issue? Here is the code for my simple job.
Thanks in advance.
Note: conf.{name} indicates values I'm loading from a config file. I've tested loading and hard-coding them, both with the same result.
package streamingJob
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.eventhubs.EventHubsUtils
import org.joda.time.DateTime
object TestJob {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf()
sparkConf.setAppName("TestJob")
// Uncomment to run locally
//sparkConf.setMaster("local[2]")
val sparkContext = new SparkContext(sparkConf)
sparkContext.setLogLevel("ERROR")
val streamingContext: StreamingContext = new StreamingContext(sparkContext, Seconds(1))
val readerParams = Map[String, String] (
"eventhubs.policyname" -> conf.policyname,
"eventhubs.policykey" -> conf.policykey,
"eventhubs.namespace" -> conf.namespace,
"eventhubs.name" -> conf.name,
"eventhubs.partition.count" -> conf.partitionCount,
"eventhubs.consumergroup" -> conf.consumergroup
)
val eventData = EventHubsUtils.createDirectStreams(
streamingContext,
conf.namespace,
conf.progressdir,
Map("name" -> readerParams))
eventData.foreachRDD(r => {
r.foreachPartition { p => {
p.foreach(d => {
println(DateTime.now() + ": " + d)
}) // end of EventData
}} // foreachPartition
}) // foreachRDD
streamingContext.start()
streamingContext.awaitTermination()
}
}
Here is a set of logs from when I run this as an application, not cluster/supervised.
/spark/bin/spark-submit --class streamingJob.TestJob --master spark://{ip}:7077 --total-executor-cores 1 /spark/job-files/fatjar.jar
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
17/11/06 17:52:04 INFO SparkContext: Running Spark version 2.1.1
17/11/06 17:52:05 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/11/06 17:52:05 INFO SecurityManager: Changing view acls to: root
17/11/06 17:52:05 INFO SecurityManager: Changing modify acls to: root
17/11/06 17:52:05 INFO SecurityManager: Changing view acls groups to:
17/11/06 17:52:05 INFO SecurityManager: Changing modify acls groups to:
17/11/06 17:52:05 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); groups with view permissions: Set(); users with modify permissions: Set(root); groups with modify permissions: Set()
17/11/06 17:52:06 INFO Utils: Successfully started service 'sparkDriver' on port 44384.
17/11/06 17:52:06 INFO SparkEnv: Registering MapOutputTracker
17/11/06 17:52:06 INFO SparkEnv: Registering BlockManagerMaster
17/11/06 17:52:06 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
17/11/06 17:52:06 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
17/11/06 17:52:06 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-b5e2c0f3-2500-42c6-b057-cf5d368580ab
17/11/06 17:52:06 INFO MemoryStore: MemoryStore started with capacity 366.3 MB
17/11/06 17:52:06 INFO SparkEnv: Registering OutputCommitCoordinator
17/11/06 17:52:06 INFO Utils: Successfully started service 'SparkUI' on port 4040.
17/11/06 17:52:06 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://{ip}:4040
17/11/06 17:52:06 INFO SparkContext: Added JAR file:/spark/job-files/fatjar.jar at spark://{ip}:44384/jars/fatjar.jar with timestamp 1509990726989
17/11/06 17:52:07 INFO StandaloneAppClient$ClientEndpoint: Connecting to master spark://{ip}:7077...
17/11/06 17:52:07 INFO TransportClientFactory: Successfully created connection to /{ip}:7077 after 72 ms (0 ms spent in bootstraps)
17/11/06 17:52:07 INFO StandaloneSchedulerBackend: Connected to Spark cluster with app ID app-20171106175207-0000
17/11/06 17:52:07 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 44624.
17/11/06 17:52:07 INFO NettyBlockTransferService: Server created on {ip}:44624
17/11/06 17:52:07 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
17/11/06 17:52:07 INFO StandaloneAppClient$ClientEndpoint: Executor added: app-20171106175207-0000/0 on worker-20171106173151-{ip}-46086 ({ip}:46086) with 1 cores
17/11/06 17:52:07 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, {ip}, 44624, None)
17/11/06 17:52:07 INFO StandaloneSchedulerBackend: Granted executor ID app-20171106175207-0000/0 on hostPort {ip}:46086 with 1 cores, 1024.0 MB RAM
17/11/06 17:52:07 INFO BlockManagerMasterEndpoint: Registering block manager {ip}:44624 with 366.3 MB RAM, BlockManagerId(driver, {ip}, 44624, None)
17/11/06 17:52:07 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, {ip}, 44624, None)
17/11/06 17:52:07 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, {ip}, 44624, None)
17/11/06 17:52:07 INFO StandaloneAppClient$ClientEndpoint: Executor updated: app-20171106175207-0000/0 is now RUNNING
17/11/06 17:52:08 INFO StandaloneSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
I have a maven scala application that submits a spark job to Spark standalone single node cluster. When job is submitted, Spark application tries to access cassandra, which is hosted on Amazon EC2 instance, using spark-cassandra-connector. Connection is established, but results are not returned. After some time connector disconnects. It works fine if I'm running spark in local mode.
I tried to create simple application and my code looks like this:
val sc = SparkContextLoader.getSC
def runSparkJob():Unit={
val table =sc.cassandraTable("prosolo_logs_zj", "logevents")
println(table.collect().mkString("\n"))
}
SparkContext.scala
object SparkContextLoader {
val sparkConf = new SparkConf()
sparkConf.setMaster("spark://127.0.1.1:7077")
sparkConf.set("spark.cores_max","2")
sparkConf.set("spark.executor.memory","2g")
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
sparkConf.setAppName("Test application")
sparkConf.set("spark.cassandra.connection.host", "xxx.xxx.xxx.xxx")
sparkConf.set("spark.cassandra.connection.port", "9042")
sparkConf.set("spark.ui.port","4041")
val oneJar="/samplesparkmaven/target/samplesparkmaven-jar.jar"
sparkConf.setJars(List(oneJar))
#transient val sc = new SparkContext(sparkConf)
}
Console output looks like:
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
17/02/14 23:11:25 INFO SparkContext: Running Spark version 2.1.0
17/02/14 23:11:26 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/02/14 23:11:27 WARN Utils: Your hostname, zoran-Latitude-E5420 resolves to a loopback address: 127.0.1.1; using 192.168.2.68 instead (on interface wlp2s0)
17/02/14 23:11:27 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
17/02/14 23:11:27 INFO SecurityManager: Changing view acls to: zoran
17/02/14 23:11:27 INFO SecurityManager: Changing modify acls to: zoran
17/02/14 23:11:27 INFO SecurityManager: Changing view acls groups to:
17/02/14 23:11:27 INFO SecurityManager: Changing modify acls groups to:
17/02/14 23:11:27 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(zoran); groups with view permissions: Set(); users with modify permissions: Set(zoran); groups with modify permissions: Set()
17/02/14 23:11:28 INFO Utils: Successfully started service 'sparkDriver' on port 33995.
17/02/14 23:11:28 INFO SparkEnv: Registering MapOutputTracker
17/02/14 23:11:28 INFO SparkEnv: Registering BlockManagerMaster
17/02/14 23:11:28 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
17/02/14 23:11:28 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
17/02/14 23:11:28 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-7b25a4cc-cb37-4332-a59b-e36fa45511cd
17/02/14 23:11:28 INFO MemoryStore: MemoryStore started with capacity 870.9 MB
17/02/14 23:11:28 INFO SparkEnv: Registering OutputCommitCoordinator
17/02/14 23:11:28 INFO Utils: Successfully started service 'SparkUI' on port 4041.
17/02/14 23:11:28 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://192.168.2.68:4041
17/02/14 23:11:28 INFO SparkContext: Added JAR /samplesparkmaven/target/samplesparkmaven-jar.jar at spark://192.168.2.68:33995/jars/samplesparkmaven-jar.jar with timestamp 1487142688817
17/02/14 23:11:28 INFO StandaloneAppClient$ClientEndpoint: Connecting to master spark://127.0.1.1:7077...
17/02/14 23:11:28 INFO TransportClientFactory: Successfully created connection to /127.0.1.1:7077 after 62 ms (0 ms spent in bootstraps)
17/02/14 23:11:29 INFO StandaloneSchedulerBackend: Connected to Spark cluster with app ID app-20170214231129-0016
17/02/14 23:11:29 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 36901.
17/02/14 23:11:29 INFO NettyBlockTransferService: Server created on 192.168.2.68:36901
17/02/14 23:11:29 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
17/02/14 23:11:29 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 192.168.2.68, 36901, None)
17/02/14 23:11:29 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.2.68:36901 with 870.9 MB RAM, BlockManagerId(driver, 192.168.2.68, 36901, None)
17/02/14 23:11:29 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 192.168.2.68, 36901, None)
17/02/14 23:11:29 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 192.168.2.68, 36901, None)
17/02/14 23:11:29 INFO StandaloneSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
17/02/14 23:11:29 INFO NettyUtil: Found Netty's native epoll transport in the classpath, using it
17/02/14 23:11:31 INFO Cluster: New Cassandra host /xxx.xxx.xxx.xxx:9042 added
17/02/14 23:11:31 INFO CassandraConnector: Connected to Cassandra cluster: Test Cluster
17/02/14 23:11:32 INFO SparkContext: Starting job: collect at SparkConnector.scala:28
17/02/14 23:11:32 INFO DAGScheduler: Got job 0 (collect at SparkConnector.scala:28) with 6 output partitions
17/02/14 23:11:32 INFO DAGScheduler: Final stage: ResultStage 0 (collect at SparkConnector.scala:28)
17/02/14 23:11:32 INFO DAGScheduler: Parents of final stage: List()
17/02/14 23:11:32 INFO DAGScheduler: Missing parents: List()
17/02/14 23:11:32 INFO DAGScheduler: Submitting ResultStage 0 (CassandraTableScanRDD[0] at RDD at CassandraRDD.scala:18), which has no missing parents
17/02/14 23:11:32 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 8.4 KB, free 870.9 MB)
17/02/14 23:11:32 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 4.4 KB, free 870.9 MB)
17/02/14 23:11:32 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.2.68:36901 (size: 4.4 KB, free: 870.9 MB)
17/02/14 23:11:32 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:996
17/02/14 23:11:32 INFO DAGScheduler: Submitting 6 missing tasks from ResultStage 0 (CassandraTableScanRDD[0] at RDD at CassandraRDD.scala:18)
17/02/14 23:11:32 INFO TaskSchedulerImpl: Adding task set 0.0 with 6 tasks
17/02/14 23:11:39 INFO CassandraConnector: Disconnected from Cassandra cluster: Test Cluster
I'm using
scala 2.11.6
spark 2.1.0 (both for standalone spark and dependency in application)
spark-cassandra-connector 2.0.0-M3
Cassandra Java driver 3.0.0
Apache Cassandra 3.9
Version compatibility table for cassandra connector doesn't show any problem with it, but I can't figure out anything else that might be the problem.
I've finally solved the problem I had. It turned out to be the problem with path. I was using local path to the jar, but missed to add "." at the beginning, so it was treated as absolute path.
Unfortunately, there was no exception in the application indicating that file doesn't exist on the provided path, and the only exception I had was from the worker which could not find jar file in the Spark cluster.
I need to build an application where a master node distributes a large dataset to a number of worker nodes for parallel processing. I'm running this application on a single machine and JVM, therefore I've called setMaster("local[4]") on my SparkConf object. I'm using Spark 1.5.2 and Scala 2.10.5 through IntelliJ.
If a certain condition occurs in the portions of the dataset handled by the executors, I need the master node to be notified and perform some action. In addition to that, I need the other executors to die. To that end, I looked around the Scala Spark API and realized that SparkException allows me to do the first portion of what I'm looking for, by propagating the exception (which is Serializable, by the way) to the driver. I have verified this experimentally, as follows:
def main(args:Array[String]) = {
val conf = new SparkConf().setAppName("Spark Exceptions").setMaster("local[4]")
val sc = new SparkContext(conf)
val l = Range(1, 5000)
val parl = sc.parallelize(l, 8);
val mappedRDD = parl.map(func)
try {
val res = mappedRDD.collect()
println(res)
} catch {
case s:SparkException => println("A worker threw an exception.")
case t:Throwable => throw(t)
}
}
def func(i:Int) = {
if(i == 1 || i == 4000)
throw new SparkException("Bad number detected.")
else
Math.pow(i, 2)
}
If you look closely at the example above, you will note that since the original Range contains both 1 and 4000, two failures are guaranteed in the worker nodes. Indeed, I see two executors failing in stderr, while my stdout is populated with:
A worker threw an exception.
Process finished with exit code 0
Unfortunately, the SparkException thrown does not kill the other executors, since, as mentioned before, I can see both executors failing in stderr, while two other executors complete their tasks successfully. So my first question is: is there any way I can immediately kill the other executors once this exception is caught by the driver program?
My second question is a little bit more subtle: I'd like some information to be exchanged from the executors to the worker node about what piece of information caused the error. Sure, I could write to and read from a file, particularly since I'm on the same filesystem, but I'd like a faster and more elegant solution. So I thought I'd subclass SparkException in order to add a field that described what piece of data caused the error:
import org.apache.spark.SparkException
class WorkerViolation(msg:String, data:Any) extends SparkException(msg) {
override def toString = "A worker violation occurred: " + msg
def getData = data
def this(dat:Any) = this("Error at worker.", dat)
}
The goal is to be able to use the getData accessor to retrieve some information. To that end, I tried modifying the program above, as follows:
...
catch {
case w:WorkerViolation => println("A worker threw an exception, with data: " + w.getData)
case t:Throwable => throw(t)
}
}
def func(i:Int) = {
if(i == 1 || i == 4000)
throw new WorkerViolation("Bad number detected.", i)
else
Math.pow(i, 2)
}
Note that this time I'm both throwing and catching WorkerViolations. Unfortunately, this particular exception seems to be killing the driver node as well. The full trace is of course gigantic, yet copied for consistency:
15/12/07 18:31:17 WARN util.Utils: Your hostname, debian resolves to a loopback address: 127.0.1.1; using 192.168.2.222 instead (on interface eth0)
15/12/07 18:31:17 WARN util.Utils: Set SPARK_LOCAL_IP if you need to bind to another address
15/12/07 18:31:17 INFO spark.SecurityManager: Changing view acls to: jason
15/12/07 18:31:17 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(jason)
15/12/07 18:31:17 INFO slf4j.Slf4jLogger: Slf4jLogger started
15/12/07 18:31:17 INFO Remoting: Starting remoting
15/12/07 18:31:17 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark#192.168.2.222:33572]
15/12/07 18:31:17 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark#192.168.2.222:33572]
15/12/07 18:31:17 INFO spark.SparkEnv: Registering MapOutputTracker
15/12/07 18:31:17 INFO spark.SparkEnv: Registering BlockManagerMaster
15/12/07 18:31:17 INFO storage.DiskBlockManager: Created local directory at /tmp/spark-local-20151207183117-4300
15/12/07 18:31:17 INFO storage.MemoryStore: MemoryStore started with capacity 2.1 GB.
15/12/07 18:31:17 INFO network.ConnectionManager: Bound socket to port 34704 with id = ConnectionManagerId(192.168.2.222,34704)
15/12/07 18:31:17 INFO storage.BlockManagerMaster: Trying to register BlockManager
15/12/07 18:31:17 INFO storage.BlockManagerInfo: Registering block manager 192.168.2.222:34704 with 2.1 GB RAM
15/12/07 18:31:17 INFO storage.BlockManagerMaster: Registered BlockManager
15/12/07 18:31:17 INFO spark.HttpServer: Starting HTTP Server
15/12/07 18:31:17 INFO server.Server: jetty-8.1.14.v20131031
15/12/07 18:31:17 INFO server.AbstractConnector: Started SocketConnector#0.0.0.0:42426
15/12/07 18:31:17 INFO broadcast.HttpBroadcast: Broadcast server started at http://192.168.2.222:42426
15/12/07 18:31:17 INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-0ae72587-14c5-4bfe-a151-2bcafc889ee8
15/12/07 18:31:17 INFO spark.HttpServer: Starting HTTP Server
15/12/07 18:31:17 INFO server.Server: jetty-8.1.14.v20131031
15/12/07 18:31:17 INFO server.AbstractConnector: Started SocketConnector#0.0.0.0:55556
15/12/07 18:31:17 INFO server.Server: jetty-8.1.14.v20131031
15/12/07 18:31:17 INFO server.AbstractConnector: Started SelectChannelConnector#0.0.0.0:4040
15/12/07 18:31:17 INFO ui.SparkUI: Started SparkUI at http://192.168.2.222:4040
15/12/07 18:31:18 INFO spark.SparkContext: Starting job: collect at SparkExceptions.scala:16
15/12/07 18:31:18 INFO scheduler.DAGScheduler: Got job 0 (collect at SparkExceptions.scala:16) with 8 output partitions (allowLocal=false)
15/12/07 18:31:18 INFO scheduler.DAGScheduler: Final stage: Stage 0(collect at SparkExceptions.scala:16)
15/12/07 18:31:18 INFO scheduler.DAGScheduler: Parents of final stage: List()
15/12/07 18:31:18 INFO scheduler.DAGScheduler: Missing parents: List()
15/12/07 18:31:18 INFO scheduler.DAGScheduler: Submitting Stage 0 (MappedRDD[1] at map at SparkExceptions.scala:14), which has no missing parents
15/12/07 18:31:18 INFO scheduler.DAGScheduler: Submitting 8 missing tasks from Stage 0 (MappedRDD[1] at map at SparkExceptions.scala:14)
15/12/07 18:31:18 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 8 tasks
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Starting task 0.0:0 as TID 0 on executor localhost: localhost (PROCESS_LOCAL)
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Serialized task 0.0:0 as 1350 bytes in 4 ms
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Starting task 0.0:1 as TID 1 on executor localhost: localhost (PROCESS_LOCAL)
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Serialized task 0.0:1 as 1350 bytes in 0 ms
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Starting task 0.0:2 as TID 2 on executor localhost: localhost (PROCESS_LOCAL)
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Serialized task 0.0:2 as 1350 bytes in 0 ms
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Starting task 0.0:3 as TID 3 on executor localhost: localhost (PROCESS_LOCAL)
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Serialized task 0.0:3 as 1350 bytes in 1 ms
15/12/07 18:31:18 INFO executor.Executor: Running task ID 3
15/12/07 18:31:18 INFO executor.Executor: Running task ID 1
15/12/07 18:31:18 INFO executor.Executor: Running task ID 0
15/12/07 18:31:18 INFO executor.Executor: Running task ID 2
15/12/07 18:31:18 ERROR executor.Executor: Exception in task ID 0
A worker violation occurred: Bad number detected.
at SparkExceptions$.func(SparkExceptions.scala:26)
at SparkExceptions$$anonfun$1.apply$mcDI$sp(SparkExceptions.scala:14)
at SparkExceptions$$anonfun$1.apply(SparkExceptions.scala:14)
at SparkExceptions$$anonfun$1.apply(SparkExceptions.scala:14)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.rdd.RDD$$anonfun$15.apply(RDD.scala:717)
at org.apache.spark.rdd.RDD$$anonfun$15.apply(RDD.scala:717)
at org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1083)
at org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1083)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111)
at org.apache.spark.scheduler.Task.run(Task.scala:51)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:183)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
15/12/07 18:31:18 INFO executor.Executor: Serialized size of result for 2 is 5565
15/12/07 18:31:18 INFO executor.Executor: Serialized size of result for 1 is 5565
15/12/07 18:31:18 INFO executor.Executor: Sending result for 2 directly to driver
15/12/07 18:31:18 INFO executor.Executor: Sending result for 1 directly to driver
15/12/07 18:31:18 INFO executor.Executor: Serialized size of result for 3 is 5565
15/12/07 18:31:18 INFO executor.Executor: Finished task ID 2
15/12/07 18:31:18 INFO executor.Executor: Finished task ID 1
15/12/07 18:31:18 INFO executor.Executor: Sending result for 3 directly to driver
15/12/07 18:31:18 INFO executor.Executor: Finished task ID 3
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Starting task 0.0:4 as TID 4 on executor localhost: localhost (PROCESS_LOCAL)
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Serialized task 0.0:4 as 1350 bytes in 0 ms
15/12/07 18:31:18 INFO executor.Executor: Running task ID 4
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Starting task 0.0:5 as TID 5 on executor localhost: localhost (PROCESS_LOCAL)
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Serialized task 0.0:5 as 1350 bytes in 1 ms
15/12/07 18:31:18 INFO executor.Executor: Running task ID 5
15/12/07 18:31:18 WARN scheduler.TaskSetManager: Lost TID 0 (task 0.0:0)
15/12/07 18:31:18 INFO executor.Executor: Serialized size of result for 4 is 5565
15/12/07 18:31:18 INFO executor.Executor: Sending result for 4 directly to driver
15/12/07 18:31:18 INFO executor.Executor: Finished task ID 4
15/12/07 18:31:18 WARN scheduler.TaskSetManager: Loss was due to helpers.WorkerViolation
A worker violation occurred: Bad number detected.
at SparkExceptions$.func(SparkExceptions.scala:26)
at SparkExceptions$$anonfun$1.apply$mcDI$sp(SparkExceptions.scala:14)
at SparkExceptions$$anonfun$1.apply(SparkExceptions.scala:14)
at SparkExceptions$$anonfun$1.apply(SparkExceptions.scala:14)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.rdd.RDD$$anonfun$15.apply(RDD.scala:717)
at org.apache.spark.rdd.RDD$$anonfun$15.apply(RDD.scala:717)
at org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1083)
at org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1083)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111)
at org.apache.spark.scheduler.Task.run(Task.scala:51)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:183)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
15/12/07 18:31:18 INFO executor.Executor: Serialized size of result for 5 is 5565
15/12/07 18:31:18 INFO executor.Executor: Sending result for 5 directly to driver
15/12/07 18:31:18 INFO executor.Executor: Finished task ID 5
15/12/07 18:31:18 ERROR scheduler.TaskSetManager: Task 0.0:0 failed 1 times; aborting job
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Finished TID 2 in 27 ms on localhost (progress: 1/8)
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Finished TID 1 in 30 ms on localhost (progress: 2/8)
15/12/07 18:31:18 INFO scheduler.TaskSchedulerImpl: Cancelling stage 0
15/12/07 18:31:18 INFO scheduler.TaskSchedulerImpl: Stage 0 was cancelled
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Finished TID 4 in 11 ms on localhost (progress: 3/8)
15/12/07 18:31:18 INFO scheduler.DAGScheduler: Failed to run collect at SparkExceptions.scala:16
15/12/07 18:31:18 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0:0 failed 1 times, most recent failure: Exception failure in TID 0 on host localhost: A worker violation occurred: Bad number detected.
SparkExceptions$.func(SparkExceptions.scala:26)
SparkExceptions$$anonfun$1.apply$mcDI$sp(SparkExceptions.scala:14)
SparkExceptions$$anonfun$1.apply(SparkExceptions.scala:14)
SparkExceptions$$anonfun$1.apply(SparkExceptions.scala:14)
scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
scala.collection.Iterator$class.foreach(Iterator.scala:727)
scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
scala.collection.AbstractIterator.to(Iterator.scala:1157)
scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
org.apache.spark.rdd.RDD$$anonfun$15.apply(RDD.scala:717)
org.apache.spark.rdd.RDD$$anonfun$15.apply(RDD.scala:717)
org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1083)
org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1083)
org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111)
org.apache.spark.scheduler.Task.run(Task.scala:51)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:183)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1044)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1028)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1026)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1026)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:634)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1229)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Finished TID 5 in 11 ms on localhost (progress: 4/8)
15/12/07 18:31:18 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
15/12/07 18:31:18 INFO scheduler.TaskSetManager: Finished TID 3 in 34 ms on localhost (progress: 5/8)
15/12/07 18:31:18 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
Process finished with exit code 1
So my second question would then be: Why does throwing an exception of a class derived from SparkException kill the driver program as well? Is there a different strategy I can use for executor-driver communication?
FWIW, I have decided that in order to allow for a higher degree of message-passing between nodes, going down to the level of akka actors is the preferred way to go.
realy need your help to understand, what I'm doing wrong.
The intent of my experiment is to run spark job programatically instead of using ./spark-shell or ./spark-submit (These both work for me)
Environment:
I've created a Spark Cluster with 1 master & 1 worker using ./spark-ec2 script
Cluster looks good, however, when I try to run the code being packaged in a jar:
val logFile = "file:///root/spark/bin/README.md"
val conf = new SparkConf()
conf.setAppName("Simple App")
conf.setJars(List("file:///root/spark/bin/hello-apache-spark_2.10-1.0.0-SNAPSHOT.jar"))
conf.setMaster("spark://ec2-54-89-51-36.compute-1.amazonaws.com:7077")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2).cache()
val numAs = logData.filter(_.contains("a")).count()
val numBs = logData.filter(_.contains("b")).count()
println(s"1. Lines with a: $numAs, Lines with b: $numBs")
I get an exception:
*[info] Running com.paycasso.SimpleApp
14/09/05 14:50:29 INFO SecurityManager: Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
14/09/05 14:50:29 INFO SecurityManager: Changing view acls to: root
14/09/05 14:50:29 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root)
14/09/05 14:50:30 INFO Slf4jLogger: Slf4jLogger started
14/09/05 14:50:30 INFO Remoting: Starting remoting
14/09/05 14:50:30 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark#ip-10-224-14-90.ec2.internal:54683]
14/09/05 14:50:30 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark#ip-10-224-14-90.ec2.internal:54683]
14/09/05 14:50:30 INFO SparkEnv: Registering MapOutputTracker
14/09/05 14:50:30 INFO SparkEnv: Registering BlockManagerMaster
14/09/05 14:50:30 INFO DiskBlockManager: Created local directory at /tmp/spark-local-20140905145030-85cb
14/09/05 14:50:30 INFO MemoryStore: MemoryStore started with capacity 589.2 MB.
14/09/05 14:50:30 INFO ConnectionManager: Bound socket to port 47852 with id = ConnectionManagerId(ip-10-224-14-90.ec2.internal,47852)
14/09/05 14:50:30 INFO BlockManagerMaster: Trying to register BlockManager
14/09/05 14:50:30 INFO BlockManagerInfo: Registering block manager ip-10-224-14-90.ec2.internal:47852 with 589.2 MB RAM
14/09/05 14:50:30 INFO BlockManagerMaster: Registered BlockManager
14/09/05 14:50:30 INFO HttpServer: Starting HTTP Server
14/09/05 14:50:30 INFO HttpBroadcast: Broadcast server started at http://**.***.**.**:49211
14/09/05 14:50:30 INFO HttpFileServer: HTTP File server directory is /tmp/spark-e2748605-17ec-4524-983b-97aaf2f94b30
14/09/05 14:50:30 INFO HttpServer: Starting HTTP Server
14/09/05 14:50:31 INFO SparkUI: Started SparkUI at http://ip-10-224-14-90.ec2.internal:4040
14/09/05 14:50:31 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/09/05 14:50:32 INFO SparkContext: Added JAR file:///root/spark/bin/hello-apache-spark_2.10-1.0.0-SNAPSHOT.jar at http://**.***.**.**:46491/jars/hello-apache-spark_2.10-1.0.0-SNAPSHOT.jar with timestamp 1409928632274
14/09/05 14:50:32 INFO AppClient$ClientActor: Connecting to master spark://ec2-54-89-51-36.compute-1.amazonaws.com:7077...
14/09/05 14:50:32 INFO MemoryStore: ensureFreeSpace(163793) called with curMem=0, maxMem=617820979
14/09/05 14:50:32 INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 160.0 KB, free 589.0 MB)
14/09/05 14:50:32 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20140905145032-0005
14/09/05 14:50:32 INFO AppClient$ClientActor: Executor added: app-20140905145032-0005/0 on worker-20140905141732-ip-10-80-90-29.ec2.internal-57457 (ip-10-80-90-29.ec2.internal:57457) with 2 cores
14/09/05 14:50:32 INFO SparkDeploySchedulerBackend: Granted executor ID app-20140905145032-0005/0 on hostPort ip-10-80-90-29.ec2.internal:57457 with 2 cores, 512.0 MB RAM
14/09/05 14:50:32 INFO AppClient$ClientActor: Executor updated: app-20140905145032-0005/0 is now RUNNING
14/09/05 14:50:33 INFO FileInputFormat: Total input paths to process : 1
14/09/05 14:50:33 INFO SparkContext: Starting job: count at SimpleApp.scala:26
14/09/05 14:50:33 INFO DAGScheduler: Got job 0 (count at SimpleApp.scala:26) with 1 output partitions (allowLocal=false)
14/09/05 14:50:33 INFO DAGScheduler: Final stage: Stage 0(count at SimpleApp.scala:26)
14/09/05 14:50:33 INFO DAGScheduler: Parents of final stage: List()
14/09/05 14:50:33 INFO DAGScheduler: Missing parents: List()
14/09/05 14:50:33 INFO DAGScheduler: Submitting Stage 0 (FilteredRDD[2] at filter at SimpleApp.scala:26), which has no missing parents
14/09/05 14:50:33 INFO DAGScheduler: Submitting 1 missing tasks from Stage 0 (FilteredRDD[2] at filter at SimpleApp.scala:26)
14/09/05 14:50:33 INFO TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
14/09/05 14:50:36 INFO SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor#ip-10-80-90-29.ec2.internal:36966/user/Executor#2034537974] with ID 0
14/09/05 14:50:36 INFO TaskSetManager: Starting task 0.0:0 as TID 0 on executor 0: ip-10-80-90-29.ec2.internal (PROCESS_LOCAL)
14/09/05 14:50:36 INFO TaskSetManager: Serialized task 0.0:0 as 1880 bytes in 8 ms
14/09/05 14:50:37 INFO BlockManagerInfo: Registering block manager ip-10-80-90-29.ec2.internal:59950 with 294.9 MB RAM
14/09/05 14:50:38 WARN TaskSetManager: Lost TID 0 (task 0.0:0)
14/09/05 14:50:38 WARN TaskSetManager: Loss was due to java.io.EOFException
java.io.EOFException
at java.io.ObjectInputStream$BlockDataInputStream.readFully(ObjectInputStream.java:2744)
at java.io.ObjectInputStream.readFully(ObjectInputStream.java:1032)
at org.apache.hadoop.io.DataOutputBuffer$Buffer.write(DataOutputBuffer.java:63)
at org.apache.hadoop.io.DataOutputBuffer.write(DataOutputBuffer.java:101)
at org.apache.hadoop.io.UTF8.readChars(UTF8.java:216)
at org.apache.hadoop.io.UTF8.readString(UTF8.java:208)
at org.apache.hadoop.mapred.FileSplit.readFields(FileSplit.java:87)
at org.apache.hadoop.io.ObjectWritable.readObject(ObjectWritable.java:237)
at org.apache.hadoop.io.ObjectWritable.readFields(ObjectWritable.java:66)
at org.apache.spark.SerializableWritable.readObject(SerializableWritable.scala:42)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1017)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1893)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
at org.apache.spark.scheduler.ResultTask.readExternal(ResultTask.scala:147)
at java.io.ObjectInputStream.readExternalData(ObjectInputStream.java:1837)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1796)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:63)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:165)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)*
What I'm actualy doing is a call "sbt run". So I assemble the scala project and run it.
By the way, I run that project on a master host, so the driver definitely is visible for a worker host.
Any help is appreciated. That's very strange, that such a simple example doesn't work in cluster. Using ./spark-submit is not convenient, I believe.
Thanks in advance.
After wasting a lot of time, I've found the problem. Despite I haven't used hadoop/hdfs in my application, hadoop client matters. The problem was in hadoop-client version, it was different than the version of hadoop, spark was built for. Spark's hadoop version 1.2.1, but in my application that was 2.4.
When I changed the version of hadoop client to 1.2.1 in my app, I'm able to execute spark code on cluster.