I am using Pentaho to create ETL's and I am very focused on performance. I develop an ETL process that copy 163.000.000 rows from Sql server 2088 to PostgreSQL and it takes 17h.
I do not know how good or bad is this performance. Do you know how to measure if the time that takes some process is good? At least as a reference to know if I need to keep working heavily on performance or not.
Furthermore, I would like to know if it is normal that in the first 2 minutes of ETL process it load 2M rows. I calculate how long will take to load all the rows. The expected result is 6 hours, but then the performance decrease and it takes 17h.
I have been investigating in goole and I do not find any time references neither any explanations about performance.
Divide and conquer, and proceed by elimination.
First, add a LIMIT to your query so it takes 10 minutes instead of 17 hours, this will make it a lot easier to try different things.
Are the processes running on different machines? If so, measure network bandwidth utilization to make sure it isn't a bottleneck. Transfer a huge file, make sure the bandwidth is really there.
Are the processes running on the same machine? Maybe one is starving the other for IO. Are source and destination the same hard drive? Different hard drives? SSDs? You need to explain...
Examine IO and CPU usage of both processes. Does one process max out one cpu core?
Does a process max out one of the disks? Check iowait, iops, IO bandwidth, etc.
How many columns? Two INTs, 500 FLOATs, or a huge BLOB with a 12 megabyte PDF in each row? Performance would vary between these cases...
Now, I will assume the problem is on the POSTGRES side.
Create a dummy table, identical to your target table, which has:
Exact same columns (CREATE TABLE dummy LIKE table)
No indexes, No constraints (I think it is the default, double check the created table)
BEFORE INSERT trigger on it which returns NULL and drop the row.
The rows will be processed, just not inserted.
Is it fast now? OK, so the problem was insertion.
Do it again, but this time using an UNLOGGED TABLE (or a TEMPORARY TABLE). These do not have any crash-resistance because they don't use the journal, but for importing data it's OK.... if it crashes during the insert you're gonna wipe it out and restart anyway.
Still No indexes, No constraints. Is it fast?
If slow => IO write bandwidth issue, possibly caused by something else hitting the disks
If fast => IO is OK, problem not found yet!
With the table loaded with data, add indexes and constraints one by one, find out if you got, say, a CHECK that uses a slow SQL function, or a FK into a table which has no index, that kind of stuff. Just check how long it takes to create the constraint.
Note: on an import like this you would normally add indices and constraints after the import.
My gut feeling is that PG is checkpointing like crazy due to the large volume of data, due to too-low checkpointing settings in the config. Or some issue like that, probably random IO writes related. You put the WAL on a fast SSD, right?
17H is too much. Far too much. For 200 Million rows, 6 hours is even a lot.
Hints for optimization:
Check the memory size: edit the spoon.bat, find the line containing -Xmx and change it to half your machine memory size. Details varies with java version. Example for PDI V7.1.
Check if the query from the source database is not too long (because too complex, or server memory size, or ?).
Check the target commit size (try 25000 for PostgresSQL), the Use batch update for inserts in on, and also that the index and constraints are disabled.
Play with the Enable lazy conversion in the Table input. Warning, you may produce difficult to identify and debug errors due to data casting.
In the transformation property you can tune the Nr of rows in rowset (click anywhere, select Property, then the tab Miscelaneous). On the same tab check the transformation is NOT transactional.
I read through a lot of comparisons between Azure Table/Blob/SQL storage and I think I have a good understanding of all of those ... but still, I'm unsure where to go for my specific needs. Maybe someone with experience in similar scenarios and is able to make a recommendation.
What I have
A SQL Azure DB that stores articles in raw HTML inside a varchar(max) column. Each row also has many metadata columns and many indexes for easy querying. The table contains many references to Users, Subscriptions, Tags and more - so a SQL DB will always be needed for my project.
What's the problem
I already have about 500,000 articles in this table and I expect it to grow by millions of articles per year. Each article's HTML content can be anywhere between a few KB and 1 MB or, in very few cases, larger than 1 MB.
Two problems arise: as Azure SQL storage is expensive, rather earlier than later I'll shoot myself in the head with the costs for storing this. Also, I will hit the 150 GB DB size limit also rather earlier than later. Those 500,000 articles already consume 1,6 GB DB space now.
What I want
It's clear those HTML content has to get out of the SQL DB. While the article table itself has to remain for joining it to users, subscriptions, tags and more for fast relational discovery of the needed articles, at least the colum that holds the HTML content could be outsourced to a cheaper storage.
At first sight, Azure Table storage seems like the perfect fit
Terabytes of data in one large table for very cheap prices and fast queries - sounds perfect to have a singe Table Storage table holding the article contents as an add-on to the SQL DB.
But reading through comparisons here shows it might not even be an option: 64 KB per column would be enough for 98 % of my articles, but there are those 2 % left where for some single articles even the whole 1 MB of the row limit might not be enough.
Blob storage sounds completely wrong, but ...
So there's just one option on Azure left: Blobs. Now, it might not be as wrong as it sounds. In most of the cases, I would need the content of only a single article at once. This should work fine and fast enough with Blob storage.
But I also have queries where I would need 50, 100 or even more rows at once INCLUDING even the content. So I would have to run the SQL query to fetch the needed articles and then fetch every single article out of the Blob storage. I have no experience with that but I can't believe I'd be able to remain in millisecond timespan for the queries when doing that. And queries that take multiple seconds are an absolute no-go for my project.
So it also does not seem to be to be an appropriate solution.
Do I look like a guy with a plan?
At least I have something like a plan. I thought about only "exporting" appropriate records into SQL Table Storage and/or Blob Storage.
Something like "as long as the content is < 64 KB export it to table storage, else keep it in the SQL table (or even export this single XL record into BLOB storage)"
That might work good enough. But it makes things complicated and maybe unnecessary error-prone.
Those other options
There are some other NoSQL DBs like MongoDB and CouchDB that seem to better fit my needs (at least from my naive point of view as someone who just read the specs on paper, I don't have experience with them). But they'd require self-hosting, some thing I'd like to get out of it's way if possible. I'm on Azure to do as little as needed in terms of self-hosting servers and services.
Did you really read until here?
Then thank you very much for your valuable time and thinking about my problems :)
Any suggestions would be greatly appreciated. As you see, I have my ideas and plans, but nothing beats experience from someone who walked down the road before :)
Thanks,
Bernhard
I signed up just solely to help with this question. In the past, I have found useful answers to my problems from Stackoverflow - thank you community - so I thought it would just be fair (perhaps fair is an understatement) to attempt to give something back with this question, as it falls on my alley.
In short, while considering all factors stated in the question, table storage may be the best option - iif you can properly estimate transactions per month: a nice article on this.
You can solve the two limitations that you mentioned, row and column limit, by splitting (plain text method or serializing it) the document/html/data. Speaking from experience with 40 GB+ data stored in Table Storage, where frequently our app retrieves more than 10 rows per each page visit in milliseconds - no argument here! If you need 50+ rows at times, you are looking at low single digits second(s), or you can do them in parallel (and further by splitting the data in different partitions), or in some async fashion. Or, read suggested multi level caching below.
A bit more detail. I tried with SQL Azure, Blob (both page and block), and Table Storage. I can not speak for Mongo DB since, partially for the reasons already mentioned here, I did not want to go that route.
Table Storage is fast; in the range of 20-50 milliseconds, or even faster sometimes (depends, for instance in the same data center i have seen it gone as low as 10 milliseconds), when querying with partition and row key. You may also further have several partitions, in some fashion based on your data and your knowledge about it.
It scales better, in terms of GB's but not transactions
Row and column limitations that you mentioned are a burden, agreed, but not a show stopper. I have written my own solution to split entities, you can too easily, or you can see this already-written-solution (does not solve the whole problem but it is a good start): https://code.google.com/p/lokad-cloud/wiki/FatEntities
Also need to keep in mind that uploading data to table storage is time consuming, even when batching entities due to other limitations (i.e., request size less than 4 MB, upload bandwidth, etc).
But using solely just TableStorage may not be the best solution (thinking about growth and economics). The best solution that we ended up implementing used multi-level caching/storage, starting from static classes, Azure Role Based Cache, Table Storage, and Block Blobs. Lets call this, for readability purposes, level 1A, 1B, 2 and 3 respectively. Using this approach, we are using a medium single instance (2 CPU Cores and 3.5 GB Ram - my laptop has better performance), and are able to process/query/rank 100GB+ of data in seconds (95% of cases in under 1 second). I believe this is fairly impressive given that we check all "articles" before displaying them (4+ million "articles").
First, this is tricky and may or may not be possible in your case. I do not have sufficient knowledge about the data and its query/processing usage, but if you can find a way to organize the data well this may be ideal. I will make an assumption: it sounds like you are trying to search through and find relevant articles given some information about a user and some tags (a variant of a news aggregator perhaps, just got a hunch for that). This assumption is made for the sake of illustrating the suggestion, so even if not correct, I hope it will help you or trigger new ideas on how this could be adopted.
Level 1A data.
Identify and add key entities or its properties in a static class (periodically, depending on how you foresee updates). Say we identify user preferences (e.g., demographics and interest, etc) and tags (tech, politics, sports, etc). This will be used to retrieve quickly who the user is, his/her preferences, and any tags. Think of these as key/value pair; for instance key being a tag, and its value being a list of article IDs, or a range of it. This solves a small piece of a problem, and that is: given a set of keys (user pref, tags, etc) what articles are we interested in! This data should be small in size, if organized properly (e.g., instead of storing article path, you can only store a number). *Note: the problem with data persistence in a static class is that application pool in Azure, by default, resets every 20 minutes or so of inactivity, thus your data in the static class is not persistent any longer - also sharing them across instances (if you have more than 1) can become a burden. Welcome level 1B to the rescue.
Leval 1B data
A solution we used, is to keep layer 1A data in a Azure Cache, for its sole purpose to re-populate the static entity when and if needed. Level 1B data solves this problem. Also, if you face issues with application pool reset timing, you can change that programmatically. So level 1A and 1B have the same data, but one is faster than the other (close enough analogy: CPU Cache and RAM).
Discussing level 1A and 1B a bit
One may point out that it is an overkill to use a static class and cache, since it uses more memory. But, the problem we found in practice, is that, first it is faster with static. Second, in cache there are some limitations (ie., 8 MB per object). With big data, that is a small limit. By keeping data in a static class one can have larger than 8 MB objects, and store them in cache by splitting them (i.e., currently we have over 40 splits). BTW please vote to increase this limit in the next release of azure, thank you! Here is the link: www.mygreatwindowsazureidea.com/forums/34192-windows-azure-feature-voting/suggestions/3223557-azure-preview-cache-increase-max-item-size
Level 2 data
Once we get the values from the key/value entity (level 1A), we use the value to retrieve the data in Table Storage. The value should tell you what partition and Row Key you need. Problem being solved here: you only query those rows relevant to the user/search context. As you can see now, having level 1A data is to minimize row querying from table storage.
Level 3 data
Table storage data can hold a summary of your articles, or the first paragraph, or something of that nature. When it is needed to show the whole article, you will get it from Blob. Table storage, should also have a column that uniquely identifies the full article in blob. In blob you may organize the data in the following manner:
Split each article in separate files.
Group n articles in one file.
Group all articles in one file (not recommended although not as bad as the first impression one may get).
For the 1st option you would store, in table storage, the path of the article, then just grab it directly from Blob. Because of the above levels, you should need to read only a few full articles here.
For the 2nd and 3rd option you would store, in table storage, the path of the file and the start and end position from where to read and where to stop reading, using seek.
Here is a sample code in C#:
YourBlobClientWithReferenceToTheFile.Seek(TableStorageData.start, SeekOrigin.Begin);
int numBytesToRead = (int)TableStorageData.end - (int)TableStorageData.start;
int numBytesRead = 0;
while (numBytesToRead > 0)
{
int n = YourBlobClientWithReferenceToTheFile.Read(bytes,numBytesRead,numBytesToRead);
if (n == 0)
break;
numBytesRead += n;
numBytesToRead -= n;
}
I hope this didn't turn into a book, and hope it was helpful. Feel free to contact me if you have follow up questions or comments.
Thanks!
The proper storage for a file is a blob. But if your query needs to return dozens of blobs at the same time, it will be too slow as you are pointing out. So you could use a hybrid approach: use Azure Tables for 98% of your data, and if it's too large, use a Blob instead and store the Blob URI in your table.
Also, are you compressing your content at all? I sure would.
My thoughts on this: Going the MongoDB (or CouchDB) route is going to end up costing you extra Compute, as you'll need to run a few servers (for high availability). And depending on performance needed, you may end up running 2- or 4-core boxes. Three 4-core boxes is going to run more than your SQL DB costs (plus then there's the cost of storage, and MongoDB etc. will back their data in an Azure blob for duable storage).
Now, as for storing your html in blobs: this is a very common pattern, to offload large objects to blob storage. The GETs should be doable in a single call to blob storage (single transaction) especially with the file size range you mentioned. And you don't have to retrieve each blob serially; you can take advantage of TPL to download several blobs to your role instance in parallel.
One more thing: How are you using the content? If you're streaming it from your role instances, then what I said about TPL should work nicely. If, on the other hand, you're injecting href's into your output page, you can just put the blob url directly into your html page. And if you're concerned about privacy, make the blobs private and generate a short-TTL "shared access signature" granting access for a small time window (this only applies if inserting blob url's into some other html page; it doesn't apply if you're downloading to the role instance and then doing something with it there).
You could use MongoDB's GridFS feature: http://docs.mongodb.org/manual/core/gridfs/
It splits the data into 256k chunks by default (configurable up to 16mb) and lets you use the sharded database as a filesystem which you can use to store and retrieve files. If the file is larger than the chunk size, the mongo db drivers handle splitting up / re-assembling the data when the file needs to be retrieved. To add additional disk space, simply add additional shards.
You should be aware, however that only some mongodb drivers support this and it is a driver convention and not a server feature that allows for this behavior.
A few comments:
What you could do is ALWAYS store HTML content in blob storage and store the blob's URL in table storage. I personally don't like the idea of storing data conditionally i.e. if content of HTML file is more than 64 KB only then store it in blob storage otherwise use table storage. Other advantage you get out of this approach is that you can still query the data. If you store everything in blob storage, you would lose querying capability.
As far as using other NoSQL stores are concerned, only problem I see with them is that they are not natively supported on Windows Azure thus you would be responsible for managing them as well.
Another option would be to store your files as a VHD image in blob storage. Your roles can mount the VHD to their filesystem, and read the data from there.
The complication seems to be that only one VM can have read/write access to the VHD. The others can create a snapshot and read from that, but they won't see updates. Depending on how frequently your data is updated that could work. eg, if you update data at well-known times you could have all the clients unmount, take a new snapshot, and remount to get the new data.
You can also share out a VHD using SMB sharing as described in this MSDN blog post. This would allow full read/write access, but might be a little less reliable and a bit more complex.
you don't say, but if you are not compressing your articles that probably solves your issue then just use table storage.
Otherwise just use table storage and use a unique partition key for each article. If an article's too big put it in 2 rows, as long as you query by partition key you'll get both rows, then use the row key as the index indicating how the articles fit back together
One idea that i have would be to use CDN to store your article content, and link them directly from the client side, instead of any multi phase, operation of getting data from sql then going to some storage.
It would be something like
http://<cdnurl>/<container>/<articleId>.html
Infact same thing can be done with Blob storage too.
The advantage here is that this becomes insanely fast.
Disadvantage here is that security aspect is lost.
Something like Shared Access Signature can be explored for security, but I am not sure how helpful would it be for client side links.
Say I have a large production mirrored 1TB DB that resides on a single MDF device and I would like to split that up into say 5 200 Gig devices.
I want to do this without interruption to Production.
I thought I could break the mirror and use the RESTORE process for creating a mirror to achieve the split to multiple devices quickly and without interruption to Production. Doing this twice would allow me to get this done in a few hours.
Has anyone done this? Is it the preferred method seeing as we are mirroring anyways?
What are other my alternatives, Pros and Cons? And gotchas?
Also, I recall another more organic process where one would create the 5 new New Devices and somehow, over time get the objects to move over to the new devices. Not sure of the process for this but I seem to recall it being discussed. Sounds like this could take a long time and possibly cause some clocking at times?
Thanks
...Ray
This isn't quite as simple a process as it first looks, the reason being is that just adding the files to SQL server isn't enough as even if you were to add 4 new files, they would all be empty space, you would have one file with 1Tb of data in it and 4 empty ones, which would eventually fill up as SQL server uses a proportional fill method for the files, but most of your queries would still be hitting the single file.
I take it you are doing this to improve performance? If so, you will need to move data around into different files in order to actually split the data up. Whether you can do this online or not depends on whether you are running Enterprise Edition or not (as this allows you to rebuild indexes online).
An easy way to move a table (or more accurately a clustered index, which is pretty much the same thing as the table for all intents and purposes) is to add a new filegroup with a new data file and then rebuild the clustered index specifying the new filegroup, you can use the following to do this:
CREATE CLUSTERED INDEX Existing_Index_Name ON schema_name.table_name(column_name)
WITH(DROP_EXISTING=ON,Online=ON) on [new_filegroup_name]
GO
This code will create the new index on the new filegroup, get rid of the old one and if you are running enterprise edition, it will do it all without blocking the users.
See the following link for more methods of moving the data between filegroups:
Move data between SQL Server database filegroups
You should also look into partitioning your tables to help improve performance too:
Partitioning Tables and Indexes
With regards to your mirroring setup, you should break the mirror, then on the primary add all your files/filegroups, then move the data between the filegroups, then backup the modified database on the primary, restore on the mirror (so all the files are set up the same on the mirror) and then re-set up your mirroring.