I'm a beginner in Matlab and I'm trying to model the spread of an infectious disease using Matlab. However, I encounter some problems.
At first, I define the matrices that need to be filled and their initial status:
diseasematrix=zeros(20,20);
inirow=10;
inicol=10;
diseasematrix(inirow,inicol)=1; % The first place where a sick person is
infectionmatrix=zeros(20,20); % Infected people, initially all 0
healthymatrix=round(rand(20,20)*100); % Initial healthy population (randomly)
Rate=0.0001; % Rate of spread
Now, I want to make a plot where the spread of the disease is shown, using a for loop. But i'm stuck here...
for t=1:365
Zneighboursum=zeros(size(diseasematrix));
out_ZT = calc_ZT(Zneighboursum, diseasematrix);
infectionmatrix(t) = round((Rate).*(out_ZT));
diseasematrix(t) = diseasematrix(t-1) + infectionmatrix(t-1);
healthymatrix(t) = healthymatrix(t-1) - infectionmatrix(t-1);
imagesc(diseasematrix(t));
title(sprintf('Day %i',t));
drawnow;
end
This basically says that the infectionmatrix is calculated based upon the formula in the loop, the diseasematrix is calculated by adding up the sick people of the previous timestep with the infected people of the previous time. The healthy people that remain are calculated by substracting the healthy people of the previous time step with the infected people. The variable out_ZT is a function I made:
function [ZT] = calc_ZT(Zneighboursum, diseasematrix)
Zneighboursum = Zneighboursum + circshift(diseasematrix,[1 0]);
Zneighboursum = Zneighboursum + circshift(diseasematrix,[0 1]);
ZT=Zneighboursum;
end
This is to quantify the number of sick people around a central cell.
However, the result is not what I want. The plot does not evolve dynamically and the values don't seem to be right. Can anyone help me?
Thanks in advance!
There are several problems with the code:
(Rate).*(out_ZT) is wrong. Because first one is a scalar and
second is a matrix, while .* requires both to be matrices of the
same size. so a single * would work.
The infectionmatrix,
diseasematrix, healthymatrix are all 2 dimensional matrices and
in order to keep them in memory you need to have a 3 dimensional
matrix. But since you don't use the things you store later you can
just rewrite on the old one.
You store integers in the
infectionmatrix, because you calculate it with round(). That
sets the result always to zero.
The value for Rate was too low to see any result. So I increased it to 0.01 instead
(just a cautionary point) you haven't used healthymatrix in your code anywhere.
The code for the function is fine, so after debugging according to what I perceived, here's the code:
diseasematrix=zeros(20,20);
inirow=10;
inicol=10;
diseasematrix(inirow,inicol)=1; % The first place where a sick person is
infectionmatrix=zeros(20,20); % Infected people, initially all 0
healthymatrix=round(rand(20,20)*100); % Initial healthy population (randomly)
Rate=0.01;
for t=1:365
Zneighboursum=zeros(size(diseasematrix));
out_ZT = calc_ZT(Zneighboursum, diseasematrix);
infectionmatrix = (Rate*out_ZT);
diseasematrix = diseasematrix + infectionmatrix;
healthymatrix = healthymatrix - infectionmatrix;
imagesc(diseasematrix);
title(sprintf('Day %i',t));
drawnow;
end
There is several problems:
1) If you want to save a 3D matrix you will need a 3D vector:
so you have to replace myvariable(t) by myvariable(:,:,t);
2) Why did you use round ? if you round a value < 0.5 the result will be 0. So nothing will change in your loop.
3) You need to define the boundary condition (t=1) and then start your loop with t = 2.
diseasematrix=zeros(20,20);
inirow=10;
inicol=10;
diseasematrix(inirow,inicol)=1; % The first place where a sick person is
infectionmatrix =zeros(20,20); % Infected people, initially all 0
healthymatrix=round(rand(20,20)*100); % Initial healthy population (randomly)
Rate=0.01; % Rate of spread
for t=2:365
Zneighboursum=zeros(size(diseasematrix,1),size(diseasematrix,2));
out_ZT = calc_ZT(Zneighboursum, diseasematrix(:,:,t-1));
infectionmatrix(:,:,t) = (Rate).*(out_ZT);
diseasematrix(:,:,t) = diseasematrix(:,:,t-1) + infectionmatrix(:,:,t-1);
healthymatrix(:,:,t) = healthymatrix(:,:,t-1) - infectionmatrix(:,:,t-1);
imagesc(diseasematrix(:,:,t));
title(sprintf('Day %i',t));
drawnow;
end
IMPORTANT: circshift clone your matrix in order to deal with the boundary effect.
Related
I have some recordings (from 16:00PM to 16:00PM) where ones indicate some kind of noise and zeros indicate quite moments. The following code tries to replicate these recordings.
dt = datenum('00:02:00','HH:MM:ss') - datenum('00:01:00','HH:MM:ss');
time_begin = datenum('00:00:00','HH:MM:ss');
time_end = datenum('24:00:00','HH:MM:ss');
time = repmat(cellstr(datestr(time_begin:dt:time_end,'HH:MM:ss')),2,1);
loudness = ones(1,numel(time));
quiet_start = [1489 1737];
quiet_end = [1603 1906];
for i = 1: numel(quiet_start)
loudness(quiet_start(i):quiet_end(i))=0;
end
time = time(961:2400);
loudness = loudness(961:2400);
figure
plot(loudness)
ylim([0 3])
I know that in the interval 16:00PM - 16:00PM there should be only 1 "bout" of zeros. Here (if you plot loudness) you can see that there are 2 bouts of zeros.
I have 2 possibilities:
remove one of the two bouts of zeros
remove the bout of ones in the middle
Is there any measure that I can use to take this decision? I.e. Do I make a bigger error converting ones to zeros or viceversa?
There are 2 (or more) bouts of zeros because of some errors in the recordings...but for sure there should be only one. I would like to remove the bouts in order to "modify" the system as less as possible. For instance: in this case I would remove the first bout of zeros since it is the smallest, but what to do if there are more than 2 bouts? Is there any algorithm that deals with this kind of problems?
I have a matrix time-series data for 8 variables with about 2500 points (~10 years of mon-fri) and would like to calculate the mean, variance, skewness and kurtosis on a 'moving average' basis.
Lets say frames = [100 252 504 756] - I would like calculate the four functions above on over each of the (time-)frames, on a daily basis - so the return for day 300 in the case with 100 day-frame, would be [mean variance skewness kurtosis] from the period day201-day300 (100 days in total)... and so on.
I know this means I would get an array output, and the the first frame number of days would be NaNs, but I can't figure out the required indexing to get this done...
This is an interesting question because I think the optimal solution is different for the mean than it is for the other sample statistics.
I've provided a simulation example below that you can work through.
First, choose some arbitrary parameters and simulate some data:
%#Set some arbitrary parameters
T = 100; N = 5;
WindowLength = 10;
%#Simulate some data
X = randn(T, N);
For the mean, use filter to obtain a moving average:
MeanMA = filter(ones(1, WindowLength) / WindowLength, 1, X);
MeanMA(1:WindowLength-1, :) = nan;
I had originally thought to solve this problem using conv as follows:
MeanMA = nan(T, N);
for n = 1:N
MeanMA(WindowLength:T, n) = conv(X(:, n), ones(WindowLength, 1), 'valid');
end
MeanMA = (1/WindowLength) * MeanMA;
But as #PhilGoddard pointed out in the comments, the filter approach avoids the need for the loop.
Also note that I've chosen to make the dates in the output matrix correspond to the dates in X so in later work you can use the same subscripts for both. Thus, the first WindowLength-1 observations in MeanMA will be nan.
For the variance, I can't see how to use either filter or conv or even a running sum to make things more efficient, so instead I perform the calculation manually at each iteration:
VarianceMA = nan(T, N);
for t = WindowLength:T
VarianceMA(t, :) = var(X(t-WindowLength+1:t, :));
end
We could speed things up slightly by exploiting the fact that we have already calculated the mean moving average. Simply replace the within loop line in the above with:
VarianceMA(t, :) = (1/(WindowLength-1)) * sum((bsxfun(#minus, X(t-WindowLength+1:t, :), MeanMA(t, :))).^2);
However, I doubt this will make much difference.
If anyone else can see a clever way to use filter or conv to get the moving window variance I'd be very interested to see it.
I leave the case of skewness and kurtosis to the OP, since they are essentially just the same as the variance example, but with the appropriate function.
A final point: if you were converting the above into a general function, you could pass in an anonymous function as one of the arguments, then you would have a moving average routine that works for arbitrary choice of transformations.
Final, final point: For a sequence of window lengths, simply loop over the entire code block for each window length.
I have managed to produce a solution, which only uses basic functions within MATLAB and can also be expanded to include other functions, (for finance: e.g. a moving Sharpe Ratio, or a moving Sortino Ratio). The code below shows this and contains hopefully sufficient commentary.
I am using a time series of Hedge Fund data, with ca. 10 years worth of daily returns (which were checked to be stationary - not shown in the code). Unfortunately I haven't got the corresponding dates in the example so the x-axis in the plots would be 'no. of days'.
% start by importing the data you need - here it is a selection out of an
% excel spreadsheet
returnsHF = xlsread('HFRXIndices_Final.xlsx','EquityHedgeMarketNeutral','D1:D2742');
% two years to be used for the moving average. (250 business days in one year)
window = 500;
% create zero-matrices to fill with the MA values at each point in time.
mean_avg = zeros(length(returnsHF)-window,1);
st_dev = zeros(length(returnsHF)-window,1);
skew = zeros(length(returnsHF)-window,1);
kurt = zeros(length(returnsHF)-window,1);
% Now work through the time-series with each of the functions (one can add
% any other functions required), assinging the values to the zero-matrices
for count = window:length(returnsHF)
% This is the most tricky part of the script, the indexing in this section
% The TwoYearReturn is what is shifted along one period at a time with the
% for-loop.
TwoYearReturn = returnsHF(count-window+1:count);
mean_avg(count-window+1) = mean(TwoYearReturn);
st_dev(count-window+1) = std(TwoYearReturn);
skew(count-window+1) = skewness(TwoYearReturn);
kurt(count-window +1) = kurtosis(TwoYearReturn);
end
% Plot the MAs
subplot(4,1,1), plot(mean_avg)
title('2yr mean')
subplot(4,1,2), plot(st_dev)
title('2yr stdv')
subplot(4,1,3), plot(skew)
title('2yr skewness')
subplot(4,1,4), plot(kurt)
title('2yr kurtosis')
I have the following Markov chain:
This chain shows the states of the Spaceship, which is in the asteroid belt: S1 - is serviceable, S2 - is broken. 0.12 - the probability of destroying the Spaceship by a collision with an asteroid. 0.88 - the probability of that a collision will not be critical. Need to find the probability of a serviceable condition of the ship after the third collision.
Analytical solution showed the response - 0.681. But it is necessary to solve this problem by simulation method using any modeling tool (MATLAB Simulink, AnyLogic, Scilab, etc.).
Do you know what components should be used to simulate this process in Simulink or any other simulation environment? Any examples or links.
First, we know the three step probability transition matrix contains the answer (0.6815).
% MATLAB R2019a
P = [0.88 0.12;
0 1];
P3 = P*P*P
P(1,1) % 0.6815
Approach 1: Requires Econometrics Toolbox
This approach uses the dtmc() and simulate() functions.
First, create the Discrete Time Markov Chain (DTMC) with the probability transition matrix, P, and using dtmc().
mc = dtmc(P); % Create the DTMC
numSteps = 3; % Number of collisions
You can get one sample path easily using simulate(). Pay attention to how you specify the initial conditions.
% One Sample Path
rng(8675309) % for reproducibility
X = simulate(mc,numSteps,'X0',[1 0])
% Multiple Sample Paths
numSamplePaths = 3;
X = simulate(mc,numSteps,'X0',[numSamplePaths 0]) % returns a 4 x 3 matrix
The first row is the X0 row for the starting state (initial condition) of the DTMC. The second row is the state after 1 transition (X1). Thus, the fourth row is the state after 3 transitions (collisions).
% 50000 Sample Paths
rng(8675309) % for reproducibility
k = 50000;
X = simulate(mc,numSteps,'X0',[k 0]); % returns a 4 x 50000 matrix
prob_survive_3collisions = sum(X(end,:)==1)/k % 0.6800
We can bootstrap a 95% Confidence Interval on the mean probability to survive 3 collisions to get 0.6814 ± 0.00069221, or rather, [0.6807 0.6821], which contains the result.
numTrials = 40;
ProbSurvive_3collisions = zeros(numTrials,1);
for trial = 1:numTrials
Xtrial = simulate(mc,numSteps,'X0',[k 0]);
ProbSurvive_3collisions(trial) = sum(Xtrial(end,:)==1)/k;
end
% Mean +/- Halfwidth
alpha = 0.05;
mean_prob_survive_3collisions = mean(ProbSurvive_3collisions)
hw = tinv(1-(0.5*alpha), numTrials-1)*(std(ProbSurvive_3collisions)/sqrt(numTrials))
ci95 = [mean_prob_survive_3collisions-hw mean_prob_survive_3collisions+hw]
maxNumCollisions = 10;
numSamplePaths = 50000;
ProbSurvive = zeros(maxNumCollisions,1);
for numCollisions = 1:maxNumCollisions
Xc = simulate(mc,numCollisions,'X0',[numSamplePaths 0]);
ProbSurvive(numCollisions) = sum(Xc(end,:)==1)/numSamplePaths;
end
For a more complex system you'll want to use Stateflow or SimEvents, but for this simple example all you need is a single Unit Delay block (output = 0 => S1, output = 1 => S2), with a Switch block, a Random block, and some comparison blocks to construct the logic determining the next value of the state.
Presumably you must execute the simulation a (very) large number of times and average the results to get a statistically significant output.
You'll need to change the "seed" of the random generator each time you run the simulation.
This can be done by setting the seed to be "now" (or something similar to that).
Alternatively you could quite easily vectorize the model so that you only need to execute it once.
If you want to simulate this, it is fairly easy in matlab:
servicable = 1;
t = 0;
while servicable =1
t = t+1;
servicable = rand()<=0.88
end
Now t represents the amount of steps before the ship is broken.
Wrap this in a for loop and you can do as many simulations as you like.
Note that this can actually give you the distribution, if you want to know it after 3 times, simply add && t<3 to the while condition.
I have to write some code in Matlab that simulates tossing a coin 150 times. I have to count how many times the coin lands on heads and create a vector that gives a running percentage of the heads.
Then I have to make a table of the number of trials, random 'flips", and the running percentages of heads. I assume random "flips" means heads or tails for that trial.
I also have to create a line graph with trials on the x-axis and probabilities (percentages) on the y-axis. I'm assuming the percentages are just the percentage of getting heads.
Sorry if this post was long. I figure giving the details now will make it easier to see what I was trying to do with the code. I didn't create the table or plot yet because I'm not even sure how to code for the actual problem.
NUM_TRIALS = 150;
trials = 1:NUM_TRIALS;
heads = 0;
t = rand(NUM_TRIALS,1);
percent_h = zeros(size(t));
for i = trials
if (t(i) < 0.5)
heads = heads + 1;
percent_h = heads./trials;
end
end
flips = t;
disp('Number of Trials, Random flips, Heads Percentage')
disp([trials', flips, percent_h'])
plot(trials,percent_h)
title('Trial Number vs. Percent Heads')
xlabel('Trial number')
ylabel('Percent Heads')
Your code is actually pretty close to answering your question, but there are a few issues that I see.
You should index t by the current trial number.
Likewise, percent_h should be indexed accordingly. This should be pre-allocated as well.
Not sure what z is supposed to represent...
To make the plot, just use plot. xlabel will give a label to the x axis, ylabel to the y axis. title will give a name to the plot.
You should divide by i, not trials.
So, your code should look something like this. There's a fair number of ways to simplify it, but I'll preserve your code as much as possible.
NUM_TRIALS = 150;
trials = 1:NUM_TRIALS;
heads = 0;
t = rand(NUM_TRIALS,1);
percent_h=zeros(size(t));
for i = trials
if (t(i) < 0.5)
heads = heads + 1;
end
percent_h(i) = heads/i;
end
plot(trials,percent_h)
xlabel('Trial Number')
ylabel('Percent Heads')
title ('Trial Number vs Percent Heads')
You can actually solve this more simply by taking advantage of a few other MATLAB functions, as hinted at by #PearsonArtPhoto. Firstly, you can use RANDI to generate the coin tosses as ones for a head. Then, you can use CUMSUM to get the cumulative number of heads. Dividing this element wise by 1:n gives you the cumulative fraction of heads.
n=150;
ishead = randi([0,1],1,n);
plot(cumsum(ishead)./(1:n));
Him I am working on modelling a wind turbine using turbine specific parameters from three manufacturers
My code is
Site_speed = xlsread('test.xlsx','Sheet1'); % Wind speed data recorded on site
air_density = xlsread('test.xlsx','Sheet2'); % Air density data recorded on site
Turbine_parameters = xlsread('windparameters.xlsx'); % Wind turbine unit database
Ref_wind_speed = Turbine_parameters(:,1); % Wind speed from wind turbine unit database file Turbine_parameters
Ref_output = Turbine_parameters(:,2:4); % Power output from wind turbine unit database file Turbine_parameters
Density_correct = (air_density./air_density_ref);
for K = 1 : size(Ref_output, 2)
power_out(:,:,K) = Density_correct.* interp1( Ref_wind_speed, Ref_output(:,K), Site_speed, 'nearest');
% xlswrite('this_file2.xlsx', power_out(:,:,1), 'sheet1');
% xlswrite('this_file2.xlsx', power_out(:,:,2), 'sheet2');
% xlswrite('this_file2.xlsx', power_out(:,:,3), 'sheet3');
%% WIND TURBINE FINANCIAL ANALYSIS + OPERATIONAL EMISSIONS
Array_supply(:,:,K) = (1-Losses) .* power_out(:,:,K) .* Turbines;
Total_array(:,:,K) = sum(Array_supply(:));
Array_OM_cost(:,:,K) = sum(sum(Total_array(:,:,K) * Wind_OM));
% % Grid connected system with internal load
end
for K = 1 : size(Array_supply,3)
Demand = xlsread('demandtest.xlsx');
if Demand >= Array_supply(:,:,K)
Grid(:,:,K) = Demand - Array_supply(:,:,K)
Income(:,:,K)= (Array_supply(:,:,K)*FIT_wind) + Array_supply(:,:,K)*Grid_cost);
Expences(:,:,K) = (Array_OM_cost(:,:,K)) + sum(sum((Grid(:,:,K)*Grid_cost)));
Profit(:,:,K) = sum(sum(Income(:,:,K))) - sum(sum(Expences(:,:,K)));
else
Income(:,:,K) = (Demand*FIT_wind) + (Demand*Xe_wind)+(Demand*Grid_cost);
Expences(:,:,K) = Array_OM_cost(:,:,K);
Profit(:,:,K) = sum(sum(Income(:,:,K))) - sum(sum(Expences(:,:,K)));
end
end
I have shown all of the code above, but I think that the mistakes start at the line -
for K = 1 : size(Array_supply,3)
The results I get when the program runs is a set of three matrices (as expected) where the first two are populated with zeros only (incorrect).
Also the Grid, Income and Expenses should be 365x 24 matrices (as are the Demand and Array_supply)
When I try and just run the Grid(:,:,K), an error appears saying Matlab cant find it!!
Does anyone have any idea where I might have gone wrong?
Thanks
First of all, it is always best practice in Matlab to pre-allocate your arrays. If ou know that Grid, Income, Expenses, and Profit are all going to be a 365x24x3 matrix, then you should put this before the loop, and doing likewise for the other variables.
Grid=zeros(365,24,3);
As for your problem, it seems likely that you aren't computing this correctly. Put a break point after the Demand=xlsread(...) statement. Does demand look right? Demand must be a single variable, if it is a matrix, then that is your problem. If it is a matrix, you need to loop through every variable. There are more elegant solutions involving logical masks, feel free to look up the concept if you want to. I'm going to suggest that at least for the time being, you just loop through the whole Demand loop.
Also, I don't think you are using your profit statements correctly. It is only storing a single variable per loop, but you are storing it for the entire matrix... It seems like Profit would be just as well served as a 3x1 matrix, referencing it like Profit(f) instead of Profit(:,:,f).
Oh, and a very minor point, it's Expenses, not Expences...