I have a first-order difference equation: y[n] = z0 * [n-1] + x[n] (2-3). Usually what we would do is apply the z-transform, then use the "filter" function. But my teacher wants to do it differently:
In the first-order difference equation (2-3), let yR[n] and yI[n]
denote the real and imaginary parts of y[n]. Write a pair of
real-valued difference equations expressing yR[n] and yI[n] in terms
of yR[n-1], yI[n-1], x[n], and r, cos m, and sin m
(I forgot to mention, x[n]=G*dirac[n] where G is a complex constant, which is where r, cos m and sin m came from).
Here is my result (this is the best I could think of):
yR[n]=r(yR[n-1]cosm - yI[n-1]sinm) + xR[n]
yI[n]=r(yI[n-1]cosm + yR[n-1]sinm) + xI[n]
Then the next question is:
Write a MATLAB program to implement this pair of real equations, and
use this prorgam to generate the impulse response of equation (2-3)
for r=1/2 and m=0, and m=pi/4. For these 2 cases, plot the real part
of the impulse responses obtained. Compare to the real part of the
output from the complex recursion (2-3)
What I don't understand is just how i can do this besides applying z-transform and then use the "filter" function. I have looked up on the web, and there was something about the state-space form, but I don't know if it's relevant or not. Also I'm not looking to have the solution handed to me on a silver platter, I just want to know how to work it out. Thank you very much!
You are on the right track. For a digital system, such as you have, you simply set the initial input, and run the program. There is no need to do anything fancy, you are very much overthinking the problem. In other words, for a simple function, you could do this:
f(0)=1;
f(n)=a*f(n-1);
Essentially for this you would loop for some range (Maybe 20 points), where f(n) looks at the previous function.
For your function, I suspect you simply set the real part (yR[0]) to 1, yI[0]=0, and run it for a while.
I know Matlab is 1 based, so you probably want to actually set the first value to 1, but the same principal applies.
Related
I want to implement densities of probability measures in Matlab. For that I define density as a function handle such that the integral of some function f (given as a function handle) on the interval [a,b] can be computed by
syms x
int(f(x)*density(x),x,a,b)
When it comes to the Dirac measure the problem is that
int(dirac(x),x,0,b)
delivers the value 1/2 instead of 1 for all b>0. However if I type
int(dirac(x),x,a,b)
where a<0 and b>0 the returned value is 1 as it should be. For this reason multiplying by 2 will not suffice as I want my density to be valid for all intervals [a,b]. I also dont want to distinct cases before integrating so that the code remains valid for a large class of densities.
Does someone know how I can implement the Dirac probability measure (as defined here) in Matlab?
There's no unique, accepted definition for int(delta, 0, b). The problem here isn't that you're getting the "wrong" answer as that you want to impose a different convention somehow on what the delta function is than what was provided by Matlab. (Their choice is defensible but not unique.) If you evaluate this in Wolfram Alpha, for example, it will give you theta(0) - which is not defined as anything in particular. Here theta is the Heaviside function. If you want to impose your own convention, implement your own delta function.
EDIT
I see you wrote a comment on the question, while I was writing this answer, so.... Keep in mind that the Dirac measure or Dirac delta function is not a function at all. The problem you're having, along with what's described below, all relate to trying to give a functional form to something that is inherently not a function. What you are doing is not well-defined in the framework that you have in Matlab.
END OF EDIT
To put the point about conventions in context, the delta function can be defined by different properties. One is that int(delta(x) f(x), a, b) = f(0) when a < 0 < b. This doesn't tell you anything about the integral that you want. Another, which probably leads to an answer as you're getting from Matlab, is to define it as a limit. One (but not the only choice) is the limit of the zero-mean Gaussian as the variance goes to 0.
If you want to use a convention int(delta(x) f(x), a, b) = f(0) when a <= 0 < b, that probably won't get you in much trouble, but just keep in mind that it's a convention you've chosen more than a "right" or
"wrong" answer relative to what you got from Matlab.
As related note, there is a similar choice to be made on the step function (Heaviside function) at x=0. There are conventions in which is is (a) undefined, (b) -1, (c) +1, and (d) 1/2. None is "wrong." This probably corresponds roughly to the choice on the Dirac function since the Heaviside is (roughly) the integral of the Dirac.
I'm using octave 3.8.1 which works like matlab.
I have an array of thousands of values I've only included three groupings as an example below:
(amp1=0.2; freq1=3; phase1=1; is an example of one grouping)
t=0;
amp1=0.2; freq1=3; phase1=1; %1st grouping
amp2=1.4; freq2=2; phase2=1.7; %2nd grouping
amp3=0.8; freq3=5; phase3=1.5; %3rd grouping
The Octave / Matlab code below solves for Y so I can plug it back into the equation to check values along with calculating values not located in the array.
clear all
t=0;
Y=0;
a1=[.2,3,1;1.4,2,1.7;.8,5,1.5]
for kk=1:1:length(a1)
Y=Y+a1(kk,1)*cos ((a1(kk,2))*t+a1(kk,3))
kk
end
Y
PS: I'm not trying to solve for Y since it's already solved for I'm trying to solve for Phase
The formulas located below are used to calculate Phase but I'm not sure how to put it into a for loop that will work in an array of n groupings:
How would I write the equation / for loop for finding the phase if I want to find freq=2.5 and amp=.23 and the phase is unknown I've looked online and it may require writing non linear equations which I'm not sure how to convert what I'm trying to do into such an equation.
phase1_test=acos(Y/amp1-amp3*cos(2*freq3*pi*t+phase3)/amp1-amp2*cos(2*freq2*pi*t+phase2)/amp1)-2*freq1*pi*t
phase2_test=acos(Y/amp2-amp3*cos(2*freq3*pi*t+phase3)/amp2-amp1*cos(2*freq1*pi*t+phase1)/amp2)-2*freq2*pi*t
phase3_test=acos(Y/amp3-amp2*cos(2*freq2*pi*t+phase2)/amp3-amp1*cos(2*freq1*pi*t+phase1)/amp3)-2*freq2*pi*t
Image of formula below:
I would like to do a check / calculate phases if given a freq and amp values.
I know I have to do a for loop but how do I convert the phase equation into a for loop so it will work on n groupings in an array and calculate different values not found in the array?
Basically I would be given an array of n groupings and freq=2.5 and amp=.23 and use the formula to calculate phase. Note: freq will not always be in the array hence why I'm trying to calculate the phase using a formula.
Ok, I think I finally understand your question:
you are trying to find a set of phase1, phase2,..., phaseN, such that equations like the ones you describe are satisfied
You know how to find y, and you supply values for freq and amp.
In Matlab, such a problem would be solved using, for example fsolve, but let's look at your problem step by step.
For simplicity, let me re-write your equations for phase1, phase2, and phase3. For example, your first equation, the one for phase1, would read
amp1*cos(phase1 + 2 freq1 pi t) + amp2*cos(2 freq2 pi t + phase2) + amp3*cos(2 freq3 pi t + phase3) - y = 0
Note that ampX (X is a placeholder for 1, 2, 3) are given, pi is a constant, t is given via Y (I think), freqX are given.
Hence, you are, in fact, dealing with a non-linear vector equation of the form
F(phase) = 0
where F is a multi-dimensional (vector) function taking a multi-dimensional (vector) input variable phase (comprised of phase1, phase2,..., phaseN). And you are looking for the set of phaseX, where all of the components of your vector function F are zero. N.B. F is a shorthand for your functions. Therefore, the first component of F, called f1, for example, is
f1 = amp1*cos(phase1+...) + amp2*cos(phase2+...) + amp3*cos(phase3+...) - y = 0.
Hence, f1 is a one-dimensional function of phase1, phase2, and phase3.
The technical term for what you are trying to do is find a zero of a non-linear vector function, or find a solution of a non-linear vector function. In Matlab, there are different approaches.
For a one-dimensional function, you can use fzero, which is explained at http://www.mathworks.com/help/matlab/ref/fzero.html?refresh=true
For a multi-dimensional (vector) function as yours, I would look into using fsolve, which is part of Matlab's optimization toolbox (which means I don't know how to do this in Octave). The function fsolve is explained at http://www.mathworks.com/help/optim/ug/fsolve.html
If you know an approximate solution for your phases, you may also look into iterative, local methods.
In particular, I would recommend you look into the Newton's Method, which allows you to find a solution to your system of equations F. Wikipedia has a good explanation of Newton's Method at https://en.wikipedia.org/wiki/Newton%27s_method . Newton iterations are very simple to implement and you should find a lot of resources online. You will have to compute the derivative of your function F with respect to each of your variables phaseX, which is very simple to compute since you're only dealing with cos() functions. For starters, have a look at the one-dimensional Newton iteration method in Matlab at http://www.math.colostate.edu/~gerhard/classes/331/lab/newton.html .
Finally, if you want to dig deeper, I found a textbook on this topic from the society for industrial and applied math: https://www.siam.org/books/textbooks/fr16_book.pdf .
As you can see, this is a very large field; Newton's method should be able to help you out, though.
Good luck!
How do I calculate the time it takes for a curve to reach a specific x coordinate (in Matlab). Let's say we have:
dx/dt = x^2 + y^2 and dy/dt = 5.x.y and the curve starts at the point (a,b). With help from ode45 I was able to get the figure of the curve. I need too calculate the time it takes for the curve too reach x = c, (c>a). I've been told that this can be done by interpolation, but I have no idea how to write the code.
Depending on the behavior of your system around c, using data interpolation methods such as interp1 on the output may or may not work. The more rigorous way to solve this is either with events (see my answers here or here) or by using the single structure output argument form of ode45 in conjunction with deval and regular data interpolation methods. Both of these use polynomial interpolation methods designed to work with the underlying ODEs. Though more complicated, events are probably the best way to accuratly determine crossing times like your case.
What is the least computational time consuming way to solve in Matlab the equation:
exp(ax)-ax+c=0
where a and c are constants and x is the value I'm trying to find?
Currently I am using the in built solver function, and I know the solution is single valued, but it is just taking longer than I would like.
Just wanting something to run more quickly is insufficient for that to happen.
And, sorry, but if fzero is not fast enough then you won't do much better for a general root finding tool.
If you aren't using fzero, then why not? After all, that IS the built-in solver you did not name. (BE EXPLICIT! Otherwise we must guess.) Perhaps you are using solve, from the symbolic toolbox. It will be more slow, since it is a symbolic tool.
Having said the above, I might point out that you might be able to improve by recognizing that this is really a problem with a single parameter, c. That is, transform the problem to solving
exp(y) - y + c = 0
where
y = ax
Once you know the value of y, divide by a to get x.
Of course, this way of looking at the problem makes it obvious that you have made an incorrect statement, that the solution is single valued. There are TWO solutions for any negative value of c less than -1. When c = -1, the solution is unique, and for c greater than -1, no solutions exist in real numbers. (If you allow complex results, then there will be solutions there too.)
So if you MUST solve the above problem frequently and fzero was inadequate, then I would consider a spline model, where I had precomputed solutions to the problem for a sufficient number of distinct values of c. Interpolate that spline model to get a predicted value of y for any c.
If I needed more accuracy, I might take a single Newton step from that point.
In the event that you can use the Lambert W function, then solve actually does give us a solution for the general problem. (As you see, I am just guessing what you are trying to solve this with, and what are your goals. Explicit questions help the person trying to help you.)
solve('exp(y) - y + c')
ans =
c - lambertw(0, -exp(c))
The zero first argument to lambertw yields the negative solution. In fact, we can use lambertw to give us both the positive and negative real solutions for any c no larger than -1.
X = #(c) c - lambertw([0 -1],-exp(c));
X(-1.1)
ans =
-0.48318 0.41622
X(-2)
ans =
-1.8414 1.1462
Solving your system symbolically
syms a c x;
fx0 = solve(exp(a*x)-a*x+c==0,x)
which results in
fx0 =
(c - lambertw(0, -exp(c)))/a
As #woodchips pointed out, the Lambert W function has two primary branches, W0 and W−1. The solution given is with respect to the upper (or principal) branch, denoted W0, your equation actually has an infinite number of complex solutions for Wk (the W0 and W−1 solutions are real if c is in [−∞, 0]). In Matlab, lambertw is only implemented for symbolic inputs and thus is very slow method of solving your equation if you're interested in numerical (double precision) solutions.
If you wish to solve such equations numerically in an efficient manner, you might look at Corless, et al. 1996. But, as long as your parameter c is in [−∞, 0], i.e., -exp(c) in [−1/e, 0] and you're interested in the W0 branch, you can use the Matlab code that I wrote to answer a similar question at Math.StackExchange. This code should be much much more efficient that using a naïve approach with fzero.
If your values of c are not in [−∞, 0] or you want the solution corresponding to a different branch, then your solution may be complex-valued and you won't be able to use the simple code I linked to above. In that case, you can more fully implement the function by reading the Corless, et al. 1996 paper or you can try converting the Lambert W to a Wright ω function: W0(z) = ω(log(z)), W−1(z) = ω(log(z)−2πi). In your case, using Matlab's wrightOmega, the W0 branch corresponds to:
fx0 =
(c - wrightOmega(log(-exp(c))))/a
and the W−1 branch to:
fxm1 =
(c - wrightOmega(log(-exp(c))-2*sym(pi)*1i))/a
If c is real, then the above reduces to
fx0 =
(c - wrightOmega(c+sym(pi)*1i))/a
and
fxm1 =
(c - wrightOmega(c-sym(pi)*1i))/a
Matlab's wrightOmega function is also symbolic only, but I have written a double precision implementation (based on Lawrence, et al. 2012) that you can find on my GitHub here and that is 3+ orders of magnitude faster than evaluating the function symbolically. As your problem is technically in terms of a Lambert W, it may be more efficient, and possibly more numerically accurate, to implement that more complicated function for the regime of interest (this is due to the log transformation and the extra evaluation of a complex log). But feel free to test.
I would like to measure the goodness-of-fit to an exponential decay curve. I am using the lsqcurvefit MATLAB function. I have been suggested by someone to do a chi-square test.
I would like to use the MATLAB function chi2gof but I am not sure how I would tell it that the data is being fitted to an exponential curve
The chi2gof function tests the null hypothesis that a set of data, say X, is a random sample drawn from some specified distribution (such as the exponential distribution).
From your description in the question, it sounds like you want to see how well your data X fits an exponential decay function. I really must emphasize, this is completely different to testing whether X is a random sample drawn from the exponential distribution. If you use chi2gof for your stated purpose, you'll get meaningless results.
The usual approach for testing the goodness of fit for some data X to some function f is least squares, or some variant on least squares. Further, a least squares approach can be used to generate test statistics that test goodness-of-fit, many of which are distributed according to the chi-square distribution. I believe this is probably what your friend was referring to.
EDIT: I have a few spare minutes so here's something to get you started. DISCLAIMER: I've never worked specifically on this problem, so what follows may not be correct. I'm going to assume you have a set of data x_n, n = 1, ..., N, and the corresponding timestamps for the data, t_n, n = 1, ..., N. Now, the exponential decay function is y_n = y_0 * e^{-b * t_n}. Note that by taking the natural logarithm of both sides we get: ln(y_n) = ln(y_0) - b * t_n. Okay, so this suggests using OLS to estimate the linear model ln(x_n) = ln(x_0) - b * t_n + e_n. Nice! Because now we can test goodness-of-fit using the standard R^2 measure, which matlab will return in the stats structure if you use the regress function to perform OLS. Hope this helps. Again I emphasize, I came up with this off the top of my head in a couple of minutes, so there may be good reasons why what I've suggested is a bad idea. Also, if you know the initial value of the process (ie x_0), then you may want to look into constrained least squares where you bind the parameter ln(x_0) to its known value.