postgres index with date in where clause - postgresql

I have large table with several million rows in Postgresql 9.1. One of the columns is timestamp with time zone.
Frequently used query is looking for data using where clause 'column > (now()::date - 11)' to look for last ten days.
I want to build an index that would work only for last months data, to limit the scan. Partial index.
So far I have not figured out how to use actual last month, so I started by hardcoding '2015-12-01' as a start date for index.
create index q on test (i) where i > '2015-01-01';
this worked fine, index was created. But unfortunately, it was not used, as it treats '2015-01-01' as a ::timestamp, while query is with a ::date. So index was not used and I was back to square one.
Next I tried to modify index to compare column with date, so it would match. But here I hit the immutable wall.
As to_date or cast as date are mutable functions, they are dependent on local timezone, index creation fails.
if I have test table like this:
create table test (i timestamptz);
and then try to create index with
create index q on test (i) where i > to_date('2015-01-01','YYYY-DD-MM');
then it fails with
ERROR: functions in index predicate must be marked IMMUTABLE
this is understandable. But now, when I try it with specific timezone
create index q on test (i) where i > to_date('2015-01-01','YYYY-DD-MM')
at time zone 'UTC';
it still fails
ERROR: functions in index predicate must be marked IMMUTABLE
this I don't understand anymore. It has timezone defined. What else is immutable?
I also tried creating immutable function myself:
CREATE FUNCTION
datacube=# create or replace function immutable_date(timestamptz) returns date as $$
select ($1::date at time zone 'UTC')::date;
$$ language sql immutable;
but using this function in index:
create index q on test (i) where i > immutable_date('2015-01-01');
fails with the same error:
ERROR: functions in index predicate must be marked IMMUTABLE
I am at loss here. Maybe it has something to do with Locales, not only timezones? Or something else makes it mutable?
And also - maybe there are another, simpler way, to limit index to last month or two of data? Table partitioning in Postgres would require rebuilding entire database, and so far I have not found anything else.

Related

How to add a date column which is 7 days later than an existing column in a Postgres table? [duplicate]

Does PostgreSQL support computed / calculated columns, like MS SQL Server? I can't find anything in the docs, but as this feature is included in many other DBMSs I thought I might be missing something.
Eg: http://msdn.microsoft.com/en-us/library/ms191250.aspx
Postgres 12 or newer
STORED generated columns are introduced with Postgres 12 - as defined in the SQL standard and implemented by some RDBMS including DB2, MySQL, and Oracle. Or the similar "computed columns" of SQL Server.
Trivial example:
CREATE TABLE tbl (
int1 int
, int2 int
, product bigint GENERATED ALWAYS AS (int1 * int2) STORED
);
fiddle
VIRTUAL generated columns may come with one of the next iterations. (Not in Postgres 15, yet).
Related:
Attribute notation for function call gives error
Postgres 11 or older
Up to Postgres 11 "generated columns" are not supported.
You can emulate VIRTUAL generated columns with a function using attribute notation (tbl.col) that looks and works much like a virtual generated column. That's a bit of a syntax oddity which exists in Postgres for historic reasons and happens to fit the case. This related answer has code examples:
Store common query as column?
The expression (looking like a column) is not included in a SELECT * FROM tbl, though. You always have to list it explicitly.
Can also be supported with a matching expression index - provided the function is IMMUTABLE. Like:
CREATE FUNCTION col(tbl) ... AS ... -- your computed expression here
CREATE INDEX ON tbl(col(tbl));
Alternatives
Alternatively, you can implement similar functionality with a VIEW, optionally coupled with expression indexes. Then SELECT * can include the generated column.
"Persisted" (STORED) computed columns can be implemented with triggers in a functionally equivalent way.
Materialized views are a related concept, implemented since Postgres 9.3.
In earlier versions one can manage MVs manually.
YES you can!! The solution should be easy, safe, and performant...
I'm new to postgresql, but it seems you can create computed columns by using an expression index, paired with a view (the view is optional, but makes makes life a bit easier).
Suppose my computation is md5(some_string_field), then I create the index as:
CREATE INDEX some_string_field_md5_index ON some_table(MD5(some_string_field));
Now, any queries that act on MD5(some_string_field) will use the index rather than computing it from scratch. For example:
SELECT MAX(some_field) FROM some_table GROUP BY MD5(some_string_field);
You can check this with explain.
However at this point you are relying on users of the table knowing exactly how to construct the column. To make life easier, you can create a VIEW onto an augmented version of the original table, adding in the computed value as a new column:
CREATE VIEW some_table_augmented AS
SELECT *, MD5(some_string_field) as some_string_field_md5 from some_table;
Now any queries using some_table_augmented will be able to use some_string_field_md5 without worrying about how it works..they just get good performance. The view doesn't copy any data from the original table, so it is good memory-wise as well as performance-wise. Note however that you can't update/insert into a view, only into the source table, but if you really want, I believe you can redirect inserts and updates to the source table using rules (I could be wrong on that last point as I've never tried it myself).
Edit: it seems if the query involves competing indices, the planner engine may sometimes not use the expression-index at all. The choice seems to be data dependant.
One way to do this is with a trigger!
CREATE TABLE computed(
one SERIAL,
two INT NOT NULL
);
CREATE OR REPLACE FUNCTION computed_two_trg()
RETURNS trigger
LANGUAGE plpgsql
SECURITY DEFINER
AS $BODY$
BEGIN
NEW.two = NEW.one * 2;
RETURN NEW;
END
$BODY$;
CREATE TRIGGER computed_500
BEFORE INSERT OR UPDATE
ON computed
FOR EACH ROW
EXECUTE PROCEDURE computed_two_trg();
The trigger is fired before the row is updated or inserted. It changes the field that we want to compute of NEW record and then it returns that record.
PostgreSQL 12 supports generated columns:
PostgreSQL 12 Beta 1 Released!
Generated Columns
PostgreSQL 12 allows the creation of generated columns that compute their values with an expression using the contents of other columns. This feature provides stored generated columns, which are computed on inserts and updates and are saved on disk. Virtual generated columns, which are computed only when a column is read as part of a query, are not implemented yet.
Generated Columns
A generated column is a special column that is always computed from other columns. Thus, it is for columns what a view is for tables.
CREATE TABLE people (
...,
height_cm numeric,
height_in numeric GENERATED ALWAYS AS (height_cm * 2.54) STORED
);
db<>fiddle demo
Well, not sure if this is what You mean but Posgres normally support "dummy" ETL syntax.
I created one empty column in table and then needed to fill it by calculated records depending on values in row.
UPDATE table01
SET column03 = column01*column02; /*e.g. for multiplication of 2 values*/
It is so dummy I suspect it is not what You are looking for.
Obviously it is not dynamic, you run it once. But no obstacle to get it into trigger.
Example on creating an empty virtual column
,(SELECT *
From (values (''))
A("virtual_col"))
Example on creating two virtual columns with values
SELECT *
From (values (45,'Completed')
, (1,'In Progress')
, (1,'Waiting')
, (1,'Loading')
) A("Count","Status")
order by "Count" desc
I have a code that works and use the term calculated, I'm not on postgresSQL pure tho we run on PADB
here is how it's used
create table some_table as
select category,
txn_type,
indiv_id,
accum_trip_flag,
max(first_true_origin) as true_origin,
max(first_true_dest ) as true_destination,
max(id) as id,
count(id) as tkts_cnt,
(case when calculated tkts_cnt=1 then 1 else 0 end) as one_way
from some_rando_table
group by 1,2,3,4 ;
A lightweight solution with Check constraint:
CREATE TABLE example (
discriminator INTEGER DEFAULT 0 NOT NULL CHECK (discriminator = 0)
);

PostgreSQL find items where daterange is past

In my PostgreSQL database I have a daterange type where they are all of a format like so: [2017-08-01,2018-01-27). I'm trying to figure out a way to identify all elements where the entire range occurs in the past. Basically I need to do cleanup, so I'm wanting a DELETE FROM type statement.
Use the function upper():
delete from my_table
where upper(my_column) <= current_date;

Does Postgres support virtual columns? [duplicate]

Does PostgreSQL support computed / calculated columns, like MS SQL Server? I can't find anything in the docs, but as this feature is included in many other DBMSs I thought I might be missing something.
Eg: http://msdn.microsoft.com/en-us/library/ms191250.aspx
Postgres 12 or newer
STORED generated columns are introduced with Postgres 12 - as defined in the SQL standard and implemented by some RDBMS including DB2, MySQL, and Oracle. Or the similar "computed columns" of SQL Server.
Trivial example:
CREATE TABLE tbl (
int1 int
, int2 int
, product bigint GENERATED ALWAYS AS (int1 * int2) STORED
);
fiddle
VIRTUAL generated columns may come with one of the next iterations. (Not in Postgres 15, yet).
Related:
Attribute notation for function call gives error
Postgres 11 or older
Up to Postgres 11 "generated columns" are not supported.
You can emulate VIRTUAL generated columns with a function using attribute notation (tbl.col) that looks and works much like a virtual generated column. That's a bit of a syntax oddity which exists in Postgres for historic reasons and happens to fit the case. This related answer has code examples:
Store common query as column?
The expression (looking like a column) is not included in a SELECT * FROM tbl, though. You always have to list it explicitly.
Can also be supported with a matching expression index - provided the function is IMMUTABLE. Like:
CREATE FUNCTION col(tbl) ... AS ... -- your computed expression here
CREATE INDEX ON tbl(col(tbl));
Alternatives
Alternatively, you can implement similar functionality with a VIEW, optionally coupled with expression indexes. Then SELECT * can include the generated column.
"Persisted" (STORED) computed columns can be implemented with triggers in a functionally equivalent way.
Materialized views are a related concept, implemented since Postgres 9.3.
In earlier versions one can manage MVs manually.
YES you can!! The solution should be easy, safe, and performant...
I'm new to postgresql, but it seems you can create computed columns by using an expression index, paired with a view (the view is optional, but makes makes life a bit easier).
Suppose my computation is md5(some_string_field), then I create the index as:
CREATE INDEX some_string_field_md5_index ON some_table(MD5(some_string_field));
Now, any queries that act on MD5(some_string_field) will use the index rather than computing it from scratch. For example:
SELECT MAX(some_field) FROM some_table GROUP BY MD5(some_string_field);
You can check this with explain.
However at this point you are relying on users of the table knowing exactly how to construct the column. To make life easier, you can create a VIEW onto an augmented version of the original table, adding in the computed value as a new column:
CREATE VIEW some_table_augmented AS
SELECT *, MD5(some_string_field) as some_string_field_md5 from some_table;
Now any queries using some_table_augmented will be able to use some_string_field_md5 without worrying about how it works..they just get good performance. The view doesn't copy any data from the original table, so it is good memory-wise as well as performance-wise. Note however that you can't update/insert into a view, only into the source table, but if you really want, I believe you can redirect inserts and updates to the source table using rules (I could be wrong on that last point as I've never tried it myself).
Edit: it seems if the query involves competing indices, the planner engine may sometimes not use the expression-index at all. The choice seems to be data dependant.
One way to do this is with a trigger!
CREATE TABLE computed(
one SERIAL,
two INT NOT NULL
);
CREATE OR REPLACE FUNCTION computed_two_trg()
RETURNS trigger
LANGUAGE plpgsql
SECURITY DEFINER
AS $BODY$
BEGIN
NEW.two = NEW.one * 2;
RETURN NEW;
END
$BODY$;
CREATE TRIGGER computed_500
BEFORE INSERT OR UPDATE
ON computed
FOR EACH ROW
EXECUTE PROCEDURE computed_two_trg();
The trigger is fired before the row is updated or inserted. It changes the field that we want to compute of NEW record and then it returns that record.
PostgreSQL 12 supports generated columns:
PostgreSQL 12 Beta 1 Released!
Generated Columns
PostgreSQL 12 allows the creation of generated columns that compute their values with an expression using the contents of other columns. This feature provides stored generated columns, which are computed on inserts and updates and are saved on disk. Virtual generated columns, which are computed only when a column is read as part of a query, are not implemented yet.
Generated Columns
A generated column is a special column that is always computed from other columns. Thus, it is for columns what a view is for tables.
CREATE TABLE people (
...,
height_cm numeric,
height_in numeric GENERATED ALWAYS AS (height_cm * 2.54) STORED
);
db<>fiddle demo
Well, not sure if this is what You mean but Posgres normally support "dummy" ETL syntax.
I created one empty column in table and then needed to fill it by calculated records depending on values in row.
UPDATE table01
SET column03 = column01*column02; /*e.g. for multiplication of 2 values*/
It is so dummy I suspect it is not what You are looking for.
Obviously it is not dynamic, you run it once. But no obstacle to get it into trigger.
Example on creating an empty virtual column
,(SELECT *
From (values (''))
A("virtual_col"))
Example on creating two virtual columns with values
SELECT *
From (values (45,'Completed')
, (1,'In Progress')
, (1,'Waiting')
, (1,'Loading')
) A("Count","Status")
order by "Count" desc
I have a code that works and use the term calculated, I'm not on postgresSQL pure tho we run on PADB
here is how it's used
create table some_table as
select category,
txn_type,
indiv_id,
accum_trip_flag,
max(first_true_origin) as true_origin,
max(first_true_dest ) as true_destination,
max(id) as id,
count(id) as tkts_cnt,
(case when calculated tkts_cnt=1 then 1 else 0 end) as one_way
from some_rando_table
group by 1,2,3,4 ;
A lightweight solution with Check constraint:
CREATE TABLE example (
discriminator INTEGER DEFAULT 0 NOT NULL CHECK (discriminator = 0)
);

Create timestamp index from JSON on PostgreSQL

I have a table on PostgreSQL with a field named data that is jsonb with a lot of objects, I want to make an index to speed up the queries. I'm using few rows to test the data (just 15 rows) but I don't want to have problems with the queries in the future. I'm getting data from the Twitter API, so with a week I get around 10gb of data. If I make the normal index
CREATE INDEX ON tweet((data->>'created_at'));
I get a text index, if I make:
Create index on tweet((CAST(data->>'created_at' AS timestamp)));
I get
ERROR: functions in index expression must be marked IMMUTABLE
I've tried to make it "inmutable" setting the timezone with
date_trunc('seconds', CAST(data->>'created_at' AS timestamp) at time zone 'GMT')
but I'm still getting the "immutable" error. So, How can I accomplish a timestamp index from a JSON? I know that I could make a simple column with the date because probably it will remain constant in the time, but I want to learn how to do that.
This expression won't be allowed in the index either:
(CAST(data->>'created_at' AS timestamp) at time zone 'UTC')
It's not immutable, because the first cast depends on your DateStyle setting (among other things). Doesn't help to translate the result to UTC after the function call, uncertainty has already crept in ...
The solution is a function that makes the cast immutable by fixing the time zone (like #a_horse already hinted).
I suggest to use to_timestamp() (which is also only STABLE, not IMMUTABLE) instead of the cast to rule out some source of trouble - DateStyle being one.
CREATE OR REPLACE FUNCTION f_cast_isots(text)
RETURNS timestamptz AS
$$SELECT to_timestamp($1, 'YYYY-MM-DD HH24:MI')$$ -- adapt to your needs
LANGUAGE sql IMMUTABLE;
Note that this returns timestamptz. Then:
CREATE INDEX foo ON t (f_cast_isots(data->>'created_at'));
Detailed explanation for this technique in this related answer:
Does PostgreSQL support "accent insensitive" collations?
Related:
Query on a time range ignoring the date of timestamps

How to cut seconds from an interval column?

In my table results from column work_time (interval type) display as 200:00:00. Is it possible to cut the seconds part, so it will be displayed as 200:00? Or, even better: 200h00min (I've seen it accepts h unit in insert so why not load it like this?).
Preferably, by altering work_time column, not by changing the select query.
This is not something you should do by altering a column but by changing the select query in some way. If you change the column you are changing storage and functional uses, and that's not good. To change it on output, you need to modify how it is retrieved.
You have two basic options. The first is to modify your select queries directly, using to_char(myintervalcol, 'HH24:MI')
However if your issue is that you have a common format you want to have universal access to in your select query, PostgreSQL has a neat trick I call "table methods." You can attach a function to a table in such a way that you can call it in a similar (but not quite identical) syntax to a new column. In this case you would do something like:
CREATE OR REPLACE FUNCTION myinterval_nosecs(mytable) RETURNS text LANGUAGE SQL
IMMUTABLE AS
$$
SELECT to_char($1.myintervalcol, 'HH24:MI');
$$;
This works on the row input, not on the underlying table. As it always returns the same information for the same input, you can mark it immutable and even index the output (meaning it can be run at plan time and indexed used).
To call this, you'd do something like:
SELECT myinterval_nosecs(m) FROM mytable m;
But you can then use the special syntax above to rewrite that as:
SELECT m.myinterval_nosecs FROM mytable m;
Note that since myinterval_nosecs is a function you cannot omit the m. at the beginning. This is because the query planner will rewrite the query in the former syntax and will not guess as to which relation you mean to run it against.