I am trying to make a Flappy Bird AI where the agent tries to learn to pass through the pipes via genetic algorithms and neural network.
My implementation is that I am using a neural network with two inputs (horizontal distance from pipe and vertical distance from pipe opening), one hidden layer of 5 neurons, and one output layer.
The genetic algorithm evolves the agent by constantly changing one of the weights of the neural network per generation. (based on this GA implementation)
However I noticed that the flappy bird agent is failing to learn, to the point where it never even attempts to flap once (the entire time, it keeps falling at the beginning of every generation) all the way until the 485th generation (where an "maximum recursion depth exceeded" error occurs)
Genetic Algorithm + Neural Network functions:
def flap(playery, playerFlapAcc):
playerVelY = playerFlapAcc
playerFlapped = True
if sound:
SOUNDS['wing'].play()
return playerVelY, playerFlapped
def mutate(n):
global in_to_hidden
global hidden_to_hidden2
global hidden_to_out
layer_select = random.uniform(0,2)
print 'Changed:'
if layer_select == 0:
selector = int(random.uniform(0,5))
print in_to_hidden.params[selector]
in_to_hidden.params[selector] = in_to_hidden.params[selector] + random.uniform(-5,5)
print in_to_hidden.params[selector]
elif layer_select == 1:
selector = int(random.uniform(0,5))
print hidden_to_hidden.params[selector]
hidden_to_hidden2.params[selector] = hidden_to_hidden2.params[selector] + random.uniform(-5,5)
print hidden_to_hidden.params[selector]
else:
selector = int(random.uniform(0,3))
print hidden_to_out.params[selector]
hidden_to_out.params[selector] = hidden_to_out.params[selector] + random.uniform(-5,5)
print hidden_to_out.params[selector]
return n
def predict_action(rangex, error, playery, playerFlapAcc, playerVelY, playerFlapped, i):
global jumped
if i % 10 == 0:
pred = n.activate([rangex, error]).argmax()
if pred == 1:
jumped = True
playerVelY, playerFlapped = flap(playery, playerFlapAcc)
return playerVelY, playerFlapped
def initalize_nn():
global in_to_hidden
global hidden_to_hidden2
global hidden_to_out
# Old code (regression)
n = FeedForwardNetwork()
# n = buildNetwork( 2, 3, data.outdim, outclass=SoftmaxLayer )
inLayer = LinearLayer(2)
hiddenLayer = SigmoidLayer(5)
hiddenLayer2 = SigmoidLayer(5)
outLayer = LinearLayer(1)
n.addInputModule(inLayer)
n.addModule(hiddenLayer)
n.addModule(hiddenLayer2)
n.addOutputModule(outLayer)
in_to_hidden = FullConnection(inLayer, hiddenLayer)
hidden_to_hidden2 = FullConnection(hiddenLayer, hiddenLayer2)
hidden_to_out = FullConnection(hiddenLayer2, outLayer)
n.addConnection(in_to_hidden)
n.addConnection(hidden_to_hidden2)
n.addConnection(hidden_to_out)
n.sortModules()
return n
def fitness_fun(score, x_distance, error):
# Fitness function was designed so that the largest distance is
# the most fit. Before going through the first pipe, total distance traveled is the fitness.
# Once agent passed through the first pipe and earned a point,
# the amount of points it gained is the main determinant of the fitness score
if error != 0:
fitval = abs((100*score) + (x_distance/(2*abs(error))))
else:
fitval = abs(100*score) + x_distance*2
return fitval
Sample implementation in the game:
def mainGame(movementInfo):
global fitness
global old_fitness
global num_nn_parameters
global score
global disx
global first_time
global n
global old_n
global in_to_hidden
global hidden_to_hidden2
global hidden_to_out
global generation
global jumped
print 'generation: ', generation
generation = generation + 1
if first_time:
### Initalizing the neural network
n = initalize_nn()
ds = ClassificationDataSet(2, nb_classes=2)
z = 0
for val in in_to_hidden.params:
in_to_hidden.params[z] = random.uniform(-2,2)
z = z + 1
num_nn_parameters = z
old_nn = n
else:
# create new nn (but with old_nn saved)
n = mutate(old_n)
disx = 0
score = 0
first_time = False
# Print weights
print_all_weights()
####
'''
NOTES:
playerx = player's x position (57)
playery = player's height
upper_gap
lower_gap
center_cord
'''
pipeHeight = IMAGES['pipe'][0].get_height()
upper_gap = newPipe1[0]['y'] + pipeHeight
lower_gap = upper_gap + PIPEGAPSIZE
center_cord = upper_gap + ((lower_gap - upper_gap)/2)
########### The main loop ###########
#playerx = 140
while True:
i = i + 1
disx = disx + 1
# Error is determined by comparing the agent's y distance from the pipe opening
error = playery - center_cord
for event in pygame.event.get():
if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE):
pygame.quit()
sys.exit()
if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP):
if playery > -2 * IMAGES['player'][0].get_height():
playerVelY = playerFlapAcc
playerFlapped = True
if sound:
SOUNDS['wing'].play()
# check for crash here
crashTest = checkCrash({'x': playerx, 'y': playery, 'index': playerIndex},
upperPipes, lowerPipes)
if crashTest[0]:
fitness = fitness_fun(score, disx, error)
print '------------------- Game Over ---------------------'
print 'fitness: [', fitness, ']'
print 'old fit: [', old_fitness, ']'
print ''
print ''
print 'error: ', error
#print 'score: ', score
print 'range_x', rangex
print 'player_x: ', disx
print '----------------------------------------------------'
print ''
print ''
print ''
print ''
print ''
# If it turns out the old nn was better
if old_fitness > fitness:
# prevents the old but good nn from being overwritten
n = old_n
fitness = old_fitness
else:
print 'Better fitness discovered'
# store the good nn as the old_nn
old_n = n
old_fitness = fitness
return {
'y': playery,
'groundCrash': crashTest[1],
'basex': basex,
'upperPipes': upperPipes,
'lowerPipes': lowerPipes,
'score': score,
'playerVelY': playerVelY,
}
rangex = upperPipes[0]['x'] - 92
# Make prediction
playerVelY, playerFlapped = predict_action(rangex, error, playery, playerFlapAcc, playerVelY, playerFlapped, i)
Does anyone know the cause of this and how I can fix this?
Related
I am trying to run a model using the GPU, no problem with the CPU. I think somehow using measured boundary conditions is causing the issue but I am not sure. I am following this example: https://docs.sciml.ai/dev/modules/NeuralPDE/tutorials/gpu/. I am following this example for using measured boundary conditions: https://docs.sciml.ai/dev/modules/MethodOfLines/tutorials/icbc_sampled/
using Random
using NeuralPDE, Lux, CUDA, Random
using Optimization
using OptimizationOptimisers
using NNlib
import ModelingToolkit: Interval
using Interpolations
# Measured Boundary Conditions (Arbitrary For Example)
bc1 = 1.0:1:1001.0 .|> Float32
bc2 = 1.0:1:1001.0 .|> Float32
ic1 = zeros(101) .|> Float32
ic2 = zeros(101) .|> Float32;
# Interpolation Functions Registered as Symbolic
itp1 = interpolate(bc1, BSpline(Cubic(Line(OnGrid()))))
up_cond_1_f(t::Float32) = itp1(t)
#register_symbolic up_cond_1_f(t)
itp2 = interpolate(bc2, BSpline(Cubic(Line(OnGrid()))))
up_cond_2_f(t::Float32) = itp2(t)
#register_symbolic up_cond_2_f(t)
itp3 = interpolate(ic1, BSpline(Cubic(Line(OnGrid()))))
init_cond_1_f(x::Float32) = itp3(x)
#register_symbolic init_cond_1_f(x)
itp4 = interpolate(ic2, BSpline(Cubic(Line(OnGrid()))))
init_cond_2_f(x::Float32) = itp4(x)
#register_symbolic init_cond_2_f(x);
# Parameters and differentials
#parameters t, x
#variables u1(..), u2(..)
Dt = Differential(t)
Dx = Differential(x);
# Arbitrary Equations
eqs = [Dt(u1(t, x)) + Dx(u2(t, x)) ~ 0.,
Dt(u1(t, x)) * u1(t,x) + Dx(u2(t, x)) + 9.81 ~ 0.]
# Boundary Conditions with Measured Data
bcs = [
u1(t,1) ~ up_cond_1_f(t),
u2(t,1) ~ up_cond_2_f(t),
u1(1,x) ~ init_cond_1_f(x),
u2(1,x) ~ init_cond_2_f(x)
]
# Space and time domains
domains = [t ∈ Interval(1.0,1001.0),
x ∈ Interval(1.0,101.0)];
# Neural network
input_ = length(domains)
n = 10
chain = Chain(Dense(input_,n,NNlib.tanh_fast),Dense(n,n,NNlib.tanh_fast),Dense(n,4))
strategy = GridTraining(.25)
ps = Lux.setup(Random.default_rng(), chain)[1]
ps = ps |> Lux.ComponentArray |> gpu .|> Float32
discretization = PhysicsInformedNN(chain,
strategy,
init_params=ps)
# Model Setup
#named pdesystem = PDESystem(eqs,bcs,domains,[t,x],[u1(t, x),u2(t, x)])
prob = discretize(pdesystem,discretization);
sym_prob = symbolic_discretize(pdesystem,discretization);
# Losses and Callbacks
pde_inner_loss_functions = sym_prob.loss_functions.pde_loss_functions
bcs_inner_loss_functions = sym_prob.loss_functions.bc_loss_functions
callback = function (p, l)
println("loss: ", l)
println("pde_losses: ", map(l_ -> l_(p), pde_inner_loss_functions))
println("bcs_losses: ", map(l_ -> l_(p), bcs_inner_loss_functions))
return false
end;
# Train Model (Throws Error)
res = Optimization.solve(prob,Adam(0.01); callback = callback, maxiters=5000)
phi = discretization.phi;
I get the following error:
GPU broadcast resulted in non-concrete element type Union{}.
This probably means that the function you are broadcasting contains an error or type instability.
Please Advise.
Below is my implementation of a2c using PyTorch. Upon learning about backpropagation in PyTorch, I have known to zero_grad() the optimizer after each update iteration. However, there is still a RunTime error on second-time backpropagation.
def torchworker(number, model):
worker_env = gym.make("Taxi-v3").env
max_steps_per_episode = 2000
worker_opt = optim.Adam(lr=5e-4, params=model.parameters())
p_history = []
val_history = []
r_history = []
running_reward = 0
episode_count = 0
under = 0
start = time.time()
for i in range(2):
state = worker_env.reset()
episode_reward = 0
penalties = 0
drop = 0
print("Episode {} begins ({})".format(episode_count, number))
worker_env.render()
criterion = nn.SmoothL1Loss()
time_solve = 0
for _ in range(1, max_steps_per_episode):
#worker_env.render()
state = torch.tensor(state, dtype=torch.long)
action_probs = model.forward(state)[0]
critic_value = model.forward(state)[1]
val_history.append((state, critic_value[0]))
# Choose action
action = np.random.choice(6, p=action_probs.detach().numpy())
p_history.append(torch.log(action_probs[action]))
# Apply chosen action
state, reward, done, _ = worker_env.step(action)
r_history.append(reward)
episode_reward += reward
time_solve += 1
if reward == -10:
penalties += 1
elif reward == 20:
drop += 1
if done:
break
# Update running reward to check condition for solving
running_reward = (running_reward * (episode_count) + episode_reward) / (episode_count + 1)
# Calculate discounted returns
returns = deque(maxlen=3500)
discounted_sum = 0
for r in r_history[::-1]:
discounted_sum = r + gamma * discounted_sum
returns.appendleft(discounted_sum)
# Calculate actor losses and critic losses
loss_actor_value = 0
loss_critic_value = 0
history = zip(p_history, val_history, returns)
for log_prob, value, ret in history:
diff = ret - value[1]
loss_actor_value += -log_prob * diff
ret_tensor = torch.tensor(ret, dtype=torch.float32)
loss_critic_value += criterion(value[1], ret_tensor)
loss = loss_actor_value + 0.1 * loss_critic_value
print(loss)
# Update params
loss.backward()
worker_opt.step()
worker_opt.zero_grad()
# Log details
end = time.time()
episode_count += 1
if episode_count % 1 == 0:
worker_env.render()
if running_reward > -50: # Condition to consider the task solved
under += 1
if under > 5:
print("Solved at episode {} !".format(episode_count))
break
I believe there may be something to do with the architecture of my AC model, so I also include it here for reference.
class ActorCriticNetwork(nn.Module):
def __init__(self, num_inputs, num_hidden, num_actions):
super(ActorCriticNetwork, self).__init__()
self.embed = nn.Embedding(500, 10)
self.fc1 = nn.Linear(10, num_hidden * 2)
self.fc2 = nn.Linear(num_hidden * 2, num_hidden)
self.c = nn.Linear(num_hidden, 1)
self.fc3 = nn.Linear(num_hidden, num_hidden)
self.a = nn.Linear(num_hidden, num_actions)
def forward(self, x):
out = F.relu(self.embed(x))
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
critic = self.c(out)
out = F.relu(self.fc3(out.detach()))
actor = F.softmax(self.a(out), dim=-1)
return actor, critic
Would you please tell me what the mistake here is? Thank you in advance.
SOLVED: I forgot to clear the history of probabilities, action-values and rewards after iterations. It is clear why that would cause the issue, as the older elements would cause propagating through old dcgs.
I'm implementing a fail safe handover procedure in ROS and I'm using python scripts to do so.
I'm using the optical sensor from a mouse to keep under control the acceleration of the object so I can detect when is falling. Everything seems to works fine but now I want to give give a limit to the monitoring procedure (let's say 1000 times) before declaring the handover succeded. The problem is that the function read that I use for the mouse get stucked, if no movement are detected the next iteration is not performed. How can I read from the device without encountering this issue?
Here is the code I'm using to read from the mouse:
def getMouseEvent():
buf = file.read(3)
x, y = struct.unpack( "bb", buf[1:] ) # <--- X and Y deltas.
return [x , y]
Here the loop I want to implement
release_grasp()
rospy.loginfo( "Force detected -- Release mode active")
# If the object is falling regrasp it.
detected= False
trials = 0
while (not(detected) and trials < 1000):
trials = trials + 1
rospy.loginfo ("Acc monitored for the" + str(trials) + "th time"
if fall_test():
cilindrical_grasp()
rospy.loginfo("Fall detected -- Object regrasped")
detected = True
rate.sleep()
The output I get blocks to a given iteration until the mouse does not detect some kind of movement.
UPDATE: Here is the full code
#!/usr/bin/env python2
import rospy
import numpy
import struct
from reflex_sf_msgs.msg import SFPose
from matteo.msg import force
from matteo.msg import acc
# Defining force treshold in each direction ( to be completed and tuned )
rospy.init_node('DetectionFail')
xt = 0.5
yt = xt
zt = 0.3
# For the future try to handle the initialization.
fx = None
fy = None
fz = None
ax = None
ay = None
rate = rospy.Rate(100) # <--- Rate Hz
#-----------------------------MOUSE-----------------------------------#
# Open the mouse device. To be sure if it is "mouse2" type in the terminal: cat /proc/bus/input/devices, look for the device whose name is "Logitech optical USB mouse" and get the name of the handler. If you need root permissions type: sudo chmod 777 /dev/input/(handler)
file = open ("/dev/input/mouse3" , "rb")
#Defining the function to read mouse deltas.
def getMouseEvent():
buf = file.read(3);
x,y = struct.unpack( "bb", buf[1:] ); # <--- X and Y deltas.
return [x , y]
#Defining the function to estimate the acceleraton.
def acc_comp():
vx_old = 0
vy_old = 0
vx_new = getMouseEvent()[0]
vy_new = getMouseEvent()[1]
x_acc = (vx_old - vx_new)*100
y_acc = (vy_old - vy_new)*100
vx_old = vx_new
vy_old = vy_new
return [x_acc , y_acc]
#---------------------------------------------------------------------#
#Defining function fall test
def fall_test():
if ( acc_comp()[1] >= 3000 or acc_comp()[1] <= -3000 ):
return True
else:
return False
#---------------------------------------------------------------------#
# Initialize hand publisher.
hand_pub = rospy.Publisher('/reflex_sf/command', SFPose, queue_size=1)
rospy.sleep(0.5)
#---------------------------------------------------------------------#
# Defining sferical grasp.
def cilindrical_grasp():
hand_pub.publish ( 2.5 , 2.5 , 2.5, 0)
#---------------------------------------------------------------------#
# Define release position.
def release_grasp():
hand_pub.publish ( 2, 2 , 2 , 0)
#---------------------------------------------------------------------#
# Define test for the force measure
def force_treshold ( fx, fy , fz):
if ( fx > xt and fy > yt or fz > zt):
return True
else:
return False
#---------------------------------------------------------------------#
# Callback function to save the datas obtained by the force sensor
def callback_force(msg):
global fx
global fy
global fz
fx = msg.fx
fy = msg.fy
fz = msg.fz
# Main loop.
def main():
#Apply the sferical grasp.
rospy.loginfo("Applying grasp")
cilindrical_grasp()
while not(rospy.is_shutdown()):
rospy.Subscriber("/Forces", force, callback_force )
if force_treshold ( fx , fy , fz ):
release_grasp()
rospy.loginfo( "Force detected -- Release mode active")
# If the object is falling regrasp it.
detected= False
trials = 0
while (not(detected) and trials < 1000):
trials = trials +1
if fall_test():
cilindrical_grasp()
rospy.loginfo("Fall detected -- Object regrasped")
detected = True
rate.sleep()
if rospy.is_shutdown() :
break
Yesterday I came out with this code:
#!/usr/bin/env python
import struct
import rospy
from matteo.msg import acc
import struct
import os
import time
i = 0
# Mouse read with a non blocking structure, the problem is that does not provide the same output as
# mouse_clean.py, probably there is a problem with the unpacking or the reading.
while i < 1000:
i += 1
try:
file = os.open("/dev/input/mouse0", os.O_RDONLY | os.O_NONBLOCK)
time.sleep(0.1)
buf = os.read(file , 3)
x,y = struct.unpack( "bb", buf[1:] ) # <--- X and Y deltas.
print ( "X:" +str ( x ) + "---" +"Y:" +str ( y ) )
except OSError as err:
if err.errno == 11:
print ( "No motion detected")
continue
os.close(file)
It works fine, if there is no motion the message is printed out but, in case of motion the output I get is quite different from the "vanilla" mode.
I’m trying to implement Adam by myself for a learning purpose.
Here is my Adam implementation:
class ADAMOptimizer(Optimizer):
"""
implements ADAM Algorithm, as a preceding step.
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.99), eps=1e-8, weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(ADAMOptimizer, self).__init__(params, defaults)
def step(self):
"""
Performs a single optimization step.
"""
loss = None
for group in self.param_groups:
#print(group.keys())
#print (self.param_groups[0]['params'][0].size()), First param (W) size: torch.Size([10, 784])
#print (self.param_groups[0]['params'][1].size()), Second param(b) size: torch.Size([10])
for p in group['params']:
grad = p.grad.data
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Momentum (Exponential MA of gradients)
state['exp_avg'] = torch.zeros_like(p.data)
#print(p.data.size())
# RMS Prop componenet. (Exponential MA of squared gradients). Denominator.
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
b1, b2 = group['betas']
state['step'] += 1
# L2 penalty. Gotta add to Gradient as well.
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
# Momentum
exp_avg = torch.mul(exp_avg, b1) + (1 - b1)*grad
# RMS
exp_avg_sq = torch.mul(exp_avg_sq, b2) + (1-b2)*(grad*grad)
denom = exp_avg_sq.sqrt() + group['eps']
bias_correction1 = 1 / (1 - b1 ** state['step'])
bias_correction2 = 1 / (1 - b2 ** state['step'])
adapted_learning_rate = group['lr'] * bias_correction1 / math.sqrt(bias_correction2)
p.data = p.data - adapted_learning_rate * exp_avg / denom
if state['step'] % 10000 ==0:
print ("group:", group)
print("p: ",p)
print("p.data: ", p.data) # W = p.data
return loss
I think I implemented everything correct however the loss graph of my implementation is very spiky compared to that of torch.optim.Adam.
My ADAM implementation loss graph (below)
torch.optim.Adam loss graph (below)
If someone could tell me what I am doing wrong, I’ll be very grateful.
For the full code including data, graph (super easy to run): https://github.com/byorxyz/AMS_pytorch/blob/master/AdamFails_1dConvex.ipynb
I want to make the data which divided label and features, beause tf.nn.softmax_cross_entropy_with_logits required.
queue = tf.RandomShuffleQueue(
capacity=capacity,
min_after_dequeue=min_after_dequeue,
dtypes=[tf.float32],
shapes=[[n_input+1]] #
)
make the queue and put the label and features.
after that I should divide label and features for cost function. but how to do that?
Thank you
import tensorflow as tf
import numpy as np
# Parameters
learning_rate = 0.003
training_epochs = 30
batch_size = 2
display_step = 1
min_after_dequeue = 5
capacity = 16246832
# Network Parameters
# feature size
n_input = 199
# 1st layer num features
n_hidden_1 = 150
# 2nd layer num features
n_hidden_2 = 100
# 3rd layer num features
n_hidden_3 = 50
# 4th layer num features
n_hidden_4 = 30
#class
n_classes = 3
#read csv, 0 index is label
filename_queue = tf.train.string_input_producer(["data.csv"])
record_default = [[0.0] for x in xrange(200)] # with a label and 199 features
#testfile
reader = tf.TextLineReader()
#file read
key, value = reader.read(filename_queue)
#decode
features = tf.decode_csv(value, record_defaults= record_default)
featurespack = tf.pack(features)
#xy = tf.map_fn(fn = lambda f: [f[1:],f[0]], elems=featurespack)
#for the batch
queue = tf.RandomShuffleQueue(
capacity=capacity,
min_after_dequeue=min_after_dequeue,
dtypes=[tf.float32],
shapes=[[n_input+1]]
)
#enqueue
enqueue_op = queue.enqueue(featurespack)
#dequeue
inputs = queue.dequeue_many(batch_size)
#threading
qr = tf.train.QueueRunner(queue, [enqueue_op] * 4)
#features n=199
x = tf.placeholder("float", [None, n_input])
# class 0,1,2
y = tf.placeholder("float", [None, n_classes])
#dropout
dropout_keep_prob = tf.placeholder("float")
# Create model
def multilayer_perceptron(_X, _weights, _biases, _keep_prob):
layer_1 = tf.nn.dropout(tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])), _keep_prob)
layer_2 = tf.nn.dropout(tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2'])), _keep_prob)
layer_3 = tf.nn.dropout(tf.nn.relu(tf.add(tf.matmul(layer_2, _weights['h3']), _biases['b3'])), _keep_prob)
layer_4 = tf.nn.dropout(tf.nn.relu(tf.add(tf.matmul(layer_3, _weights['h4']), _biases['b4'])), _keep_prob)
return tf.sigmoid(tf.matmul(layer_4, _weights['out']) + _biases['out'])
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=0.1)),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=0.1)),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], stddev=0.1)),
'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4], stddev=0.1)),
'out': tf.Variable(tf.random_normal([n_hidden_4, n_classes], stddev=0.1))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'b3': tf.Variable(tf.random_normal([n_hidden_3])),
'b4': tf.Variable(tf.random_normal([n_hidden_4])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases, dropout_keep_prob)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer
# optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.8).minimize(cost) # Adam Optimizer
# Initializing the variables
print "1"
with tf.Session() as sess:
#init
tf.initialize_all_variables().run
#what is
coord = tf.train.Coordinator()
#queue start what is
tf.train.start_queue_runners (coord=coord)
#i dont know well
enqueue_threads = qr.create_threads(sess, coord=coord, start=True)
print sess.run(features)
print sess.run(features)
print sess.run(features)
print sess.run(features)
print sess.run(features)
#
#print sess.run(feature)
#Training cycle
for epoch in range(training_epochs):
print epoch
avg_cost = 0.
# Loop over all batches
for i in range(10):
print i
if coord.should_stop():
break
#get inputs
inputs_value = sess.run(inputs)
#THIS IS NOT WORK
batch_xs = np.ndarray([x[1:] for x in inputs_value])
batch_ys = np.ndarray([x[0] for x in inputs_value])
print 'batch', len(batch_ys), len(batch_xs)
#batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Fit training using batch data
#optimzierm put x and y
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, dropout_keep_prob: 0.5})
# Compute average loss
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, dropout_keep_prob: 0.5})/batch_size
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#print ("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels, dropout_keep_prob: 1.}))
coord.request_stop ()
coord.join (enqueue_threads)
print ("Optimization Finished!")