I have N topics as input, each with messages added in ascending delivery date order. Topics can vary widely in message count, date range, partitioning strategy. But I know that all partitions for every topic will independently be in date order.
I want to merge all N topics priority-queue style into a new single topic T. T also has whatever partition count and strategy it wants since the only requirement is that each individual partition of T is still in date order on its own. I then feed T to partition-aware consumers which will consume them and idle between due dates since I want each message to be delivered on or closely thereafter its delivery date. This whole pipeline can stream forever.
I expect tuning issues with exactly how partitions amongst all the N input topics and the single T output topic are distributed, and advice which affects that specifically is welcome but right now I'm mainly interested in the overall viability of doing this at all using only Kafka topics, not a RDB or Key-value store. So some extra I/O moving messages between non-optimal topic partitions is okay.
Is this doable with the 0.9 consumer where I can control knowing which partitions are assigned to each consumer, so I can let auto-rebalancing occur while endlessly peek/merge-to-T/commit-offset the oldest message on each actual partition? I must have partition awareness to have a chance of this working.
Due to needing shared merge state (the last date added to T), is it better to stick with multiple partition-aware consumers in a single process, parallel processes or multiple servers given where that state will need to be? I favor keeping the state onboard in shared memory not networked in ZK or whatever. On a restart I can get it once and maintain it while running if on a single machine.
Am I overlooking any Kafka features that would make what I describe easier or more efficient, like some atomic message move between topics? I know I am going against the grain of its design and this scenario is similar to TS.
Related
Suppose, there is trade capture application. The application consumes message via kafka. The partition id is stock-id (eg google, apple, tesla). This works fine in normal days. Suppose there is bad news for company and people are selling stocks for X company. Then in this case, all the messages would come to single partition during that trading session or day. How do i handle, this efficiently? Can we apply multiple consumers to same partition?
its due to overloaded partition on random day. We have more than dozens of partitions along with dozens of consumers. All the partitions/ consumers are equally distributed everytime throughout the year. Its when there is sudden spike of data in single partition which happens once in month or quarterly .
Can we apply multiple consumers to same partition
Not in the same consumer group, no.
The only way to reasonably handle this is to increase max.poll.records and other consumer properties to consume faster from that partition, and/or all partitions. Unfortunately, you won't know ahead of time which partition will get "overloaded".
The other alternative is to redesign your topic(s) such that "stock tickers" are not your partition ID and whatever you do choose as your partitioning strategy is not driven by end-user behavior that is out of your control (or otherwise define your own Paritioner class).
I have a usecase where I want to have thousands of producers writing messages which will be consumed by thousands of corresponding consumers. Each producer's message is meant for exactly one consumer.
Going through the core concepts here and here: it seems like each consumer-producer pair should have its own topic. Is this correct understanding? I also looked into consumer groups but it seems they are more for parallellizing consumption.
Right now I have multiple producer-consumer pairs sharing very few topics, but because of that (i think) I am having to read a lot of messages in the consumer and filter them out for the specific producer's messages by the key. As my system scales this might take a lot of time. Also in the event I have to delete the checkpoint this will be even more problematic as it starts reading from the very beginning.
Is creating thousands of topics the solution for this? Or is there any other way to use concepts like partitions, consumer groups etc? Both producers and consumers are spark streaming/batch applications. Thanks.
Each producer's message is meant for exactly one consumer
Assuming you commit the offsets, and don't allow retries, this is the expected behavior of all Kafka consumers (or rather, consumer groups)
seems like each consumer-producer pair should have its own topic
Not really. As you said, you have many-to-many relationship of clients. You do not need to have a known pair ahead of time; a producer could send data with no expected consumer, then any consumer application(s) in the future should be able to subscribe to that topic for the data they are interested in.
sharing very few topics, but because of that (i think) I am having to read a lot of messages in the consumer and filter them out for the specific producer's messages by the key. As my system scales this might take a lot of time
The consumption would take linearly more time on a higher production rate, yes, and partitions are the way to solve for that. Beyond that, you need faster network and processing. You still need to consume and deserialize in order to filter, so the filter is not the bottleneck here.
Is creating thousands of topics the solution for this?
Ultimately depends on your data, but I'm guessing not.
Is creating thousands of topics the solution for this? Or is there any
other way to use concepts like partitions, consumer groups etc? Both
producers and consumers are spark streaming/batch applications.
What's the reason you want to have thousands of consumers? or want to have a 1 to 1 explicit relationship? As mentioned earlier, only one consumer within a consumer group will process a message. This is normal.
If however you are trying to make your record processing extremely concurrent, instead of using very high partition counts or very large consumer groups, should use something like Parallel Consumer (PC).
By using PC, you can processing all your keys in parallel, regardless of how long it takes to process, and you can be as concurrent as you wish .
PC directly solves for this, by sub partitioning the input partitions by key and processing each key in parallel.
It also tracks per record acknowledgement. Check out Parallel Consumer on GitHub (it's open source BTW, and I'm the author).
Considering a stream of different events the recommended way would be
one big topic containing all events
multiple topics for different types of events
Which option would be better?
I understand that messages not being in the same partition of a topic it means there are no order guarantee, but are there any other factors to be considered when making this decision?
A topic is a logical abstraction and should contain message of the same type. Let's say, you monitor a website and capture click stream events and on the other hand you have a database that populates it's changes into a changelog topics. You should have two different topics because click stream events are not related to you database changelog.
This has multiple advantages:
your data will have different format und you will need different (de)serializers to write read the data (using a single topic you would need a hybrid serializer and you will not get type safety when reading data)
you will have different consumer application and one application might be interested in click stream events only, while a second application is only interested in the database changelog and a third application is interested in both. If you have multiple topics, application one and two only subscribe to the topics they are interesting in -- if you have a single topic, application one an two need to read everything and filter the stuff they are not interested in increasing broker, network, can client load
As #Matthias J. Sax told before there is not a golden bullet over here. But we have to take different topics into account.
The conditioner: ordered deliveries
If you application needs guarantee order delivery, you need to work with only one topic, plus same keys for those messages which need to guarantee it.
If ordering is not mandatory, the game starts...
Does the schema same for all messages?
Would be consumers interested in the same type of different events?
What is gonna happen at the consumer side?, do we are reducing or increasing complexity in terms of implementation, maintainability, error handling...?
Does horizontal scalability important for us? More topics often means more partitions available, which means more horizontal scalability capacity. Also it allows more accurate scalability configuration at the broker side, because we can choose what number of partitions to increase per event type. or at the consumer side, what number of consumers stand up per event type.
Does makes sense parallelising consumption per message type?
...
Technically speaking, if we allow consumers to fine tune those type of events to be consumed we're potentially reducing the network bandwidth required to send undesired messages from the broker to the consumer, plus the number deserialisations for all of them (cpu used, which makes along time more free resources, energy cost reduction...).
Also is worthy to remember that splitting different type of messages in different topics doesn't mean have to consume them with different Kafka consumers because they allow consumption from different topics at the same time.
Well, there's not a clear answer for this question, but I have the feeling that with Kafka, because multiple features, if ordered deliveries are not needed we should split our messages per type in different topics.
As per Apache Kafka documentation, the order of the messages can be achieved within the partition or one partition in a topic. In this case, what is the parallelism benefit we are getting and it is equivalent to traditional MQs, isn't it?
In Kafka the parallelism is equal to the number of partitions for a topic.
For example, assume that your messages are partitioned based on user_id and consider 4 messages having user_ids 1,2,3 and 4. Assume that you have an "users" topic with 4 partitions.
Since partitioning is based on user_id, assume that message having user_id 1 will go to partition 1, message having user_id 2 will go to partition 2 and so on..
Also assume that you have 4 consumers for the topic. Since you have 4 consumers, Kafka will assign each consumer to one partition. So in this case as soon as 4 messages are pushed, they are immediately consumed by the consumers.
If you had 2 consumers for the topic instead of 4, then each consumer will be handling 2 partitions and the consuming throughput will be almost half.
To completely answer your question,
Kafka only provides a total order over messages within a partition, not between different partitions in a topic.
ie, if consumption is very slow in partition 2 and very fast in partition 4, then message with user_id 4 will be consumed before message with user_id 2. This is how Kafka is designed.
I decided to move my comment to a separate answer as I think it makes sense to do so.
While John is 100% right about what he wrote, you may consider rethinking your problem. Do you really need ALL messages to stay in order? Or do you need all messages for specific user_id (or whatever) to stay in order?
If the first, then there's no much you can do, you should use 1 partition and lose all the parallelism ability.
But if the second case, you might consider partitioning your messages by some key and thus all messages for that key will arrive to one partition (they actually might go to another partition if you resize topic, but that's a different case) and thus will guarantee that all messages for that key are in order.
In kafka Messages with the same key, from the same Producer, are delivered to the Consumer in order
another thing on top of that is, Data within a Partition will be stored in the order in which it is written therefore, data read from a Partition will be read in order for that partition
So if you want to get your messages in order across multi partitions, then you really need to group your messages with a key, so that messages with same key goes to same partition and with in that partition the messages are ordered.
In a nutshell, you will need to design a two level solution like above logically to get the messages ordered across multi partition.
You may consider having a field which has the Timestamp/Date at the time of creation of the dataset at the source.
Once, the data is consumed you can load the data into database. The data needs to be sorted at the database level before using the dataset for any usecase. Well, this is an attempt to help you think in multiple ways.
Let's consider we have a message key as the timestamp which is generated at the time of creation of the data and the value is the actual message string.
As and when a message is picked up by the consumer, the message is written into HBase with the RowKey as the kafka key and value as the kafka value.
Since, HBase is a sorted map having timestamp as a key will automatically sorts the data in order. Then you can serve the data from HBase for the downstream apps.
In this way you are not loosing the parallelism of kafka. You also have the privilege of processing sorting and performing multiple processing logics on the data at the database level.
Note: Any distributed message broker does not guarantee overall ordering. If you are insisting for that you may need to rethink using another message broker or you need to have single partition in kafka which is not a good idea. Kafka is all about parallelism by increasing partitions or increasing consumer groups.
Traditional MQ works in a way such that once a message has been processed, it gets removed from the queue. A message queue allows a bunch of subscribers to pull a message, or a batch of messages, from the end of the queue. Queues usually allow for some level of transaction when pulling a message off, to ensure that the desired action was executed, before the message gets removed, but once a message has been processed, it gets removed from the queue.
With Kafka on the other hand, you publish messages/events to topics, and they get persisted. They don’t get removed when consumers receive them. This allows you to replay messages, but more importantly, it allows a multitude of consumers to process logic based on the same messages/events.
You can still scale out to get parallel processing in the same domain, but more importantly, you can add different types of consumers that execute different logic based on the same event. In other words, with Kafka, you can adopt a reactive pub/sub architecture.
ref: https://hackernoon.com/a-super-quick-comparison-between-kafka-and-message-queues-e69742d855a8
Well, this is an old thread, but still relevant, hence decided to share my view.
I think this question is a bit confusing.
If you need strict ordering of messages, then the same strict ordering should be maintained while consuming the messages. There is absolutely no point in ordering message in queue, but not while consuming it. Kafka allows best of both worlds. It allows ordering the message within a partition right from the generation till consumption while allowing parallelism between multiple partition. Hence, if you need
Absolute ordering of all events published on a topic, use single partition. You will not have parallelism, nor do you need (again parallel and strict ordering don't go together).
Go for multiple partition and consumer, use consistent hashing to ensure all messages which need to follow relative order goes to a single partition.
One of the first things I think about when using a new service (such as a non-RDBMS data store or a message queue) is: "How should I structure my data?".
I've read and watched some introductory materials. In particular, take, for example, Kafka: a Distributed Messaging System for Log Processing, which writes:
"a Topic is the container with which messages are associated"
"the smallest unit of parallelism is the partition of a topic. This implies that all messages that ... belong to a particular partition of a topic will be consumed by a consumer in a consumer group."
Knowing this, what would be a good example that illustrates how to use topics and partitions? When should something be a topic? When should something be a partition?
As an example, let's say my (Clojure) data looks like:
{:user-id 101 :viewed "/page1.html" :at #inst "2013-04-12T23:20:50.22Z"}
{:user-id 102 :viewed "/page2.html" :at #inst "2013-04-12T23:20:55.50Z"}
Should the topic be based on user-id? viewed? at? What about the partition?
How do I decide?
When structuring your data for Kafka it really depends on how it´s meant to be consumed.
In my mind, a topic is a grouping of messages of a similar type that will be consumed by the same type of consumer so in the example above, I would just have a single topic and if you´ll decide to push some other kind of data through Kafka, you can add a new topic for that later.
Topics are registered in ZooKeeper which means that you might run into issues if trying to add too many of them, e.g. the case where you have a million users and have decided to create a topic per user.
Partitions on the other hand is a way to parallelize the consumption of the messages. The total number of partitions in a broker cluster need to be at least the same as the number of consumers in a consumer group to make sense of the partitioning feature. Consumers in a consumer group will split the burden of processing the topic between themselves according to the partitioning so that one consumer will only be concerned with messages in the partition itself is "assigned to".
Partitioning can either be explicitly set using a partition key on the producer side or if not provided, a random partition will be selected for every message.
Once you know how to partition your event stream, the topic name will be easy, so let's answer that question first.
#Ludd is correct - the partition structure you choose will depend largely on how you want to process the event stream. Ideally you want a partition key which means that your event processing is partition-local.
For example:
If you care about users' average time-on-site, then you should partition by :user-id. That way, all the events related to a single user's site activity will be available within the same partition. This means that a stream processing engine such as Apache Samza can calculate average time-on-site for a given user just by looking at the events in a single partition. This avoids having to perform any kind of costly partition-global processing
If you care about the most popular pages on your website, you should partition by the :viewed page. Again, Samza will be able to keep a count of a given page's views just by looking at the events in a single partition
Generally, we are trying to avoid having to rely on global state (such as keeping counts in a remote database like DynamoDB or Cassandra), and instead be able to work using partition-local state. This is because local state is a fundamental primitive in stream processing.
If you need both of the above use-cases, then a common pattern with Kafka is to first partition by say :user-id, and then to re-partition by :viewed ready for the next phase of processing.
On topic names - an obvious one here would be events or user-events. To be more specific you could go with with events-by-user-id and/or events-by-viewed.
This is not exactly related to the question, but in case you already have decided upon the logical segregation of records based on topics, and want to optimize the topic/partition count in Kafka, this blog post might come handy.
Key takeaways in a nutshell:
In general, the more partitions there are in a Kafka cluster, the higher the throughput one can achieve. Let the max throughout achievable on a single partition for production be p and consumption be c. Let’s say your target throughput is t. Then you need to have at least max(t/p, t/c) partitions.
Currently, in Kafka, each broker opens a file handle of both the index and the data file of every log segment. So, the more partitions, the higher that one needs to configure the open file handle limit in the underlying operating system. E.g. in our production system, we once saw an error saying too many files are open, while we had around 3600 topic partitions.
When a broker is shut down uncleanly (e.g., kill -9), the observed unavailability could be proportional to the number of partitions.
The end-to-end latency in Kafka is defined by the time from when a message is published by the producer to when the message is read by the consumer. As a rule of thumb, if you care about latency, it’s probably a good idea to limit the number of partitions per broker to 100 x b x r, where b is the number of brokers in a Kafka cluster and r is the replication factor.
I think topic name is a conclusion of a kind of messages, and producer publish message to the topic and consumer subscribe message through subscribe topic.
A topic could have many partitions. partition is good for parallelism. partition is also the unit of replication,so in Kafka, leader and follower is also said at the level of partition. Actually a partition is an ordered queue which the order is the message arrived order. And the topic is composed by one or more queue in a simple word. This is useful for us to model our structure.
Kafka is developed by LinkedIn for log aggregation and delivery. this scene is very good as a example.
The user's events on your web or app can be logged by your Web sever and then sent to Kafka broker through the producer. In producer, you could specific the partition method, for example : event type (different event is saved in different partition) or event time (partition a day into different period according your app logic) or user type or just no logic and balance all logs into many partitions.
About your case in question, you can create one topic called "page-view-event", and create N partitions through hash keys to distribute the logs into all partitions evenly. Or you could choose a partition logic to make log distributing by your spirit.