access element of fixed length C array in swift - swift

I'm trying to convert some C code to swift.
(Why? - to use CoreMIDI in OS-X in case you asked)
The C code is like this
void printPacketInfo(const MIDIPacket* packet) {
int i;
for (i=0; i<packet->length; i++) {
printf("%d ", packet->data[i]);
}
}
And MIDIPacket is defined like this
struct MIDIPacket
{
MIDITimeStamp timeStamp;
UInt16 length;
Byte data[256];
};
My Swift is like this
func printPacketInfo(packet: UnsafeMutablePointer<MIDIPacket>){
// print some things
print("length", packet.memory.length)
print("time", packet.memory.timeStamp)
print("data[0]", packet.memory.data.1)
for i in 0 ..< packet.memory.length {
print("data", i, packet.memory.data[i])
}
}
But this gives a compiler error
error: type '(UInt8, UInt8, .. cut .. UInt8, UInt8, UInt8)'
has no subscript members
So how can I dereference the I'th element of a fixed size array?

in your case you could try to use something like this ...
// this is tuple with 8 Int values, in your case with 256 Byte (UInt8 ??) values
var t = (1,2,3,4,5,6,7,8)
t.0
t.1
// ....
t.7
func arrayFromTuple<T,R>(tuple:T) -> [R] {
let reflection = Mirror(reflecting: tuple)
var arr : [R] = []
for i in reflection.children {
// better will be to throw an Error if i.value is not R
arr.append(i.value as! R)
}
return arr
}
let arr:[Int] = arrayFromTuple(t)
print(arr) // [1, 2, 3, 4, 5, 6, 7, 8]
...
let t2 = ("alfa","beta","gama")
let arr2:[String] = arrayFromTuple(t2)
arr2[1] // "beta"

This was suggested by https://gist.github.com/jckarter/ec630221890c39e3f8b9
func printPacketInfo(packet: UnsafeMutablePointer<MIDIPacket>){
// print some things
print("length", packet.memory.length)
print("time", packet.memory.timeStamp)
let len = Int(packet.memory.length)
withUnsafePointer(&packet.memory.data) { p in
let p = UnsafeMutablePointer<UInt8>(p)
for i:Int in 0 ..< len {
print(i, p[i])
}
}
}
This is horrible - I hope the compiler turns this nonsense into some good code

The error message is a hint: it shows that MIDIPacket.data is imported not as an array, but as a tuple. (Yes, that's how all fixed length arrays import in Swift.) You seem to have noticed this in the preceding line:
print("data[0]", packet.memory.data.1)
Tuples in Swift are very static, so there isn't a way to dynamically access a tuple element. Thus, in some sense the only "safe" or idiomatic way to print your packet (in the way that you're hinting at) would be 256 lines of code (or up to 256, since the packet's length field tells you when it's safe to stop):
print("data[1]", packet.memory.data.2)
print("data[2]", packet.memory.data.3)
print("data[3]", packet.memory.data.4)
/// ...
print("data[254]", packet.memory.data.255)
print("data[255]", packet.memory.data.256)
Clearly that's not a great solution. Using reflection, per user3441734's answer, is one (cumbersome) alternative. Unsafe memory access, per your own answer (via jckarter), is another (but as the name of the API says, it's "unsafe"). And, of course, you can always work with the packet through (Obj)C.
If you need to do something beyond printing the packet, you can extend the UnsafePointer-based solution to convert it to an array like so:
extension MIDIPacket {
var dataBytes: [UInt8] {
mutating get {
return withUnsafePointer(&data) { tuplePointer in
let elementPointer = UnsafePointer<UInt8>(tuplePointer)
return (0..<Int(length)).map { elementPointer[$0] }
}
}
}
}
Notice that this uses the packet's existing length property to expose an array that has only as many valid bytes as the packet claims to have (rather than filling up the rest of a 256-element array with zeroes). This does allocate memory, however, so it might not be good for the kinds of real-time run conditions you might be using CoreMIDI in.

Should this:
for i in 0 ..< packet.memory.length
Be this?
for i in 0 ..< packet.memory.data.length

Related

Finding the largest number in a [String: [Int]] Swift dictionary

I am new in Swift.
I have an error with this code and I can't find any answer on this site.
I print largest number but I want to print largest number's kind.
let interestingNumbers = [
"Prime": [2,3,5,7,11,13],
"Fibonacci": [1,1,2,3,5,8,13],
"Square": [1,4,9,16,25,36]
]
var largestNumber = 0
for (kind, numbers) in interestingNumbers {
for x in numbers {
for y in kind {
if x > largestNumber {
largestNumber = x
}
}
}
}
print("the largest number is = \(largestNumber)")
Try this instead:
var largestNumber = 0
var largestNumberKind: String!
for (kind, numbers) in interestingNumbers {
for x in numbers {
if x > largestNumber {
largestNumber = x
largertNumberKind = kind
}
}
}
print("the largest number is = \(largestNumber)")
print("the largest number kind is = \(largestNumberKind)")
Regarding your original code:
you were only keeping track of the largest number, losing the kind info you wanted. The largestNumberKind variable I added does just that.
looping over the kind: String didn't make any sense (the for y in kind line). Your outside loop already iterates a key at a time, so such inner loop is pointless.
There is nothing wrong with Paulo's approach (with some minor corrections; see comments there), but this is a reasonable problem to explore more functional approaches that don't require looping and mutation.
For example, we can just flatten each kind to its maximum element (or Int.min if it's empty), then take the kind with the highest max:
interestingNumbers
.map { (kind: $0, maxValue: $1.max() ?? .min) } // Map each kind to its max value
.max { $0.maxValue < $1.maxValue }? // Find the kind with the max value
.kind // Return the kind
This does create a slight edge condition that I don't love. If you evaluate the following:
let interestingNumbers = [
"ImaginaryReals": [],
"Smallest": [Int.min],
]
It's not well defined here which will be returned. Clearly the correct answer is "Smallest," but it's kind of order-dependent. With a little more thought (and code) we can fix this. The problem is that we are taking a little shortcut by treating an empty list as having an Int.min maximum (this also prevents our system from working for things like Float, so that's sad). So let's fix that. Let's be precise. The max of an empty list is nil. We want to drop those elements.
We can use a modified version of mapValues (which is coming in Swift 4 I believe). We'll make flatMapValues:
extension Dictionary {
func flatMapValues<T>(_ transform: (Value) throws -> T?) rethrows -> [Key: T] {
var result: [Key: T] = [:]
for (key, value) in self {
if let newValue = try transform(value) {
result[key] = newValue
}
}
return result
}
}
And with that, we can be totally precise, even with empty lists in the mix:
interestingNumbers
.flatMapValues { $0.max() }
.max { $0.1 < $1.1 }?
.key
Again, nothing wrong with Paulo's approach if you find it clear, but there are other ways of thinking about the problem.
BTW, the equivalent version that iterates would look like this:
var largestNumber: Int? = nil
var largestNumberKind: String? = nil
for (kind, numbers) in interestingNumbers {
for x in numbers {
if largestNumber == nil || largestNumber! < x {
largestNumber = x
largestNumberKind = kind
}
}
}

How do I convert a bitmask Int into a set of Ints?

I want a function that takes in a bitmask Int, and returns its masked values as a set of Ints. Something like this:
func split(bitmask: Int) -> Set<Int> {
// Do magic
}
such that
split(bitmask: 0b01001110) == [0b1000000, 0b1000, 0b100, 0b10]
One solution is to check each bit and add the corresponding mask if the bit is set.
func split(bitmask: Int) -> Set<Int> {
var results = Set<Int>()
// Change 31 to 63 or some other appropriate number based on how big your numbers can be
for shift in 0...31 {
let mask = 1 << shift
if bitmask & mask != 0 {
results.insert(mask)
}
}
return results
}
print(split(bitmask: 0b01001110))
For the binary number 0b01001110 the results will be:
[64, 2, 4, 8]
which are the decimal equivalent of the results in your question.
For the hex number 0x01001110 (which is 1000100010000 in binary) the results will be:
[16, 256, 4096, 16777216]
Here's another solution that doesn't need to know the size of the value and it's slightly more efficient for smaller numbers:
func split(bitmask: Int) -> Set<Int> {
var results = Set<Int>()
var value = bitmask
var mask = 1
while value > 0 {
if value % 2 == 1 {
results.insert(mask)
}
value /= 2
mask = mask &* 2
}
return results
}
Note that the most common use cases for bit masks include packing a collection of specific, meaningful Boolean flags into a single word-sized value, and performing tests against those flags. Swift provides facilities for this in the OptionSet type.
struct Bits: OptionSet {
let rawValue: UInt // unsigned is usually best for bitfield math
init(rawValue: UInt) { self.rawValue = rawValue }
static let one = Bits(rawValue: 0b1)
static let two = Bits(rawValue: 0b10)
static let four = Bits(rawValue: 0b100)
static let eight = Bits(rawValue: 0b1000)
}
let someBits = Bits(rawValue: 13)
// the following all return true:
someBits.contains(.four)
someBits.isDisjoint(with: .two)
someBits == [.one, .four, .eight]
someBits == [.four, .four, .eight, .one] // set algebra: order/duplicates moot
someBits == Bits(rawValue: 0b1011)
(In real-world use, of course, you'd give each of the "element" values in your OptionSet type some value that's meaningful to your use case.)
An OptionSet is actually a single value (that supports set algebra in terms of itself, instead of in terms of an element type), so it's not a collection — that is, it doesn't provide a way to enumerate its elements. But if the way you intend to use a bitmask only requires setting and testing specific flags (or combinations of flags), maybe you don't need a way to enumerate elements.
And if you do need to enumerate elements, but also want all the set algebra features of OptionSet, you can combine OptionSet with bit-splitting math such as that found in #rmaddy's answer:
extension OptionSet where RawValue == UInt { // try being more generic?
var discreteElements: [Self] {
var result = [Self]()
var bitmask = self.rawValue
var element = RawValue(1)
while bitmask > 0 && element < ~RawValue.allZeros {
if bitmask & 0b1 == 1 {
result.append(Self(rawValue: element))
}
bitmask >>= 1
element <<= 1
}
return result
}
}
someBits.discreteElements.map({$0.rawValue}) // => [1, 4, 8]
Here's my "1 line" version:
let values = Set(Array(String(0x01001110, radix: 2).characters).reversed().enumerated().map { (offset, element) -> Int in
Int(String(element))! << offset
}.filter { $0 != 0 })
Not super efficient, but fun!
Edit: wrapped in split function...
func split(bitmask: Int) -> Set<Int> {
return Set(Array(String(bitmask, radix: 2).characters).reversed().enumerated().map { (offset, element) -> Int in
Int(String(element))! << offset
}.filter { $0 != 0 })
}
Edit: a bit shorter
let values = Set(String(0x01001110, radix: 2).utf8.reversed().enumerated().map { (offset, element) -> Int in
Int(element-48) << offset
}.filter { $0 != 0 })

How to change the value of a child from a Mirror introspection

I'm doing a bunch of BLE in iOS, which means lots of tight packed C structures being encoded/decoded as byte packets. The following playground snippets illustrate what I'm trying to do generically.
import Foundation
// THE PROBLEM
struct Thing {
var a:UInt8 = 0
var b:UInt32 = 0
var c:UInt8 = 0
}
sizeof(Thing) // --> 9 :(
var thing = Thing(a: 0x42, b: 0xDEADBEAF, c: 0x13)
var data = NSData(bytes: &thing, length: sizeof(Thing)) // --> <42000000 afbeadde 13> :(
So given a series of fields of varying size, we don't get the "tightest" packing of bytes. Pretty well known and accepted. Given my simple structs, I'd like to be able to arbitrarily encode the fields back to back with no padding or alignment stuff. Relatively easy actually:
// ARBITRARY PACKING
var mirror = Mirror(reflecting: thing)
var output:[UInt8] = []
mirror.children.forEach { (label, child) in
switch child {
case let value as UInt32:
(0...3).forEach { output.append(UInt8((value >> ($0 * 8)) & 0xFF)) }
case let value as UInt8:
output.append(value)
default:
print("Don't know how to serialize \(child.dynamicType) (field \(label))")
}
}
output.count // --> 6 :)
data = NSData(bytes: &output, length: output.count) // --> <42afbead de13> :)
Huzzah! Works as expected. Could probably add a Class around it, or maybe a Protocol extension and have a nice utility. The problem I'm up against is the reverse process:
// ARBITRARY DEPACKING
var input = output.generate()
var thing2 = Thing()
"\(thing2.a), \(thing2.b), \(thing2.c)" // --> "0, 0, 0"
mirror = Mirror(reflecting:thing2)
mirror.children.forEach { (label, child) in
switch child {
case let oldValue as UInt8:
let newValue = input.next()!
print("new value for \(label!) would be \(newValue)")
// *(&child) = newValue // HOW TO DO THIS IN SWIFT??
case let oldValue as UInt32: // do little endian
var newValue:UInt32 = 0
(0...3).forEach {
newValue |= UInt32(input.next()!) << UInt32($0 * 8)
}
print("new value for \(label!) would be \(newValue)")
// *(&child) = newValue // HOW TO DO THIS IN SWIFT??
default:
print("skipping field \(label) of type \(child.dynamicType)")
}
}
Given an unpopulated struct value, I can decode the byte stream appropriately, figure out what the new value would be for each field. What I don't know how to do is to actually update the target struct with the new value. In my example above, I show how I might do it with C, get the pointer to the original child, and then update its value with the new value. I could do it easily in Python/Smalltalk/Ruby. But I don't know how one can do that in Swift.
UPDATE
As suggested in comments, I could do something like the following:
// SPECIFIC DEPACKING
extension GeneratorType where Element == UInt8 {
mutating func _UInt8() -> UInt8 {
return self.next()!
}
mutating func _UInt32() -> UInt32 {
var result:UInt32 = 0
(0...3).forEach {
result |= UInt32(self.next()!) << UInt32($0 * 8)
}
return result
}
}
extension Thing {
init(inout input:IndexingGenerator<[UInt8]>) {
self.init(a: input._UInt8(), b: input._UInt32(), c: input._UInt8())
}
}
input = output.generate()
let thing3 = Thing(input: &input)
"\(thing3.a), \(thing3.b), \(thing3.c)" // --> "66, 3735928495, 19"
Basically, I move the various stream decoding methods to byte stream (i.e. GeneratorType where Element == UInt8), and then I just have to write an initializer that strings those off in the same order and type the struct is defined as. I guess that part, which is essentially "copying" the structure definition itself (and therefore error prone), is what I had hoped to use some sort of introspection to handle. Mirrors are the only real Swift introspection I'm aware of, and it seems pretty limited.
As discussed in the comments, I suspect this is over-clever. Swift includes a lot of types not friendly to this approach. I would focus instead on how to make the boilerplate as easy as possible, without worrying about eliminating it. For example, this is very sloppy, but is in the direction I would probably go:
Start with some helper packer/unpacker functions:
func pack(values: Any...) -> [UInt8]{
var output:[UInt8] = []
for value in values {
switch value {
case let i as UInt32:
(0...3).forEach { output.append(UInt8((i >> ($0 * 8)) & 0xFF)) }
case let i as UInt8:
output.append(i)
default:
assertionFailure("Don't know how to serialize \(value.dynamicType)")
}
}
return output
}
func unpack<T>(bytes: AnyGenerator<UInt8>, inout target: T) throws {
switch target {
case is UInt32:
var newValue: UInt32 = 0
(0...3).forEach {
newValue |= UInt32(bytes.next()!) << UInt32($0 * 8)
}
target = newValue as! T
case is UInt8:
target = bytes.next()! as! T
default:
// Should throw an error here probably
assertionFailure("Don't know how to deserialize \(target.dynamicType)")
}
}
Then just call them:
struct Thing {
var a:UInt8 = 0
var b:UInt32 = 0
var c:UInt8 = 0
func encode() -> [UInt8] {
return pack(a, b, c)
}
static func decode(bytes: [UInt8]) throws -> Thing {
var thing = Thing()
let g = anyGenerator(bytes.generate())
try unpack(g, target: &thing.a)
try unpack(g, target: &thing.b)
try unpack(g, target: &thing.c)
return thing
}
}
A little more thought might be able to make the decode method a little less repetitive, but this is still probably the way I would go, explicitly listing the fields you want to encode rather than trying to introspect them. As you note, Swift introspection is very limited, and it may be that way for a long time. It's mostly used for debugging and logging, not logic.
I have tagged Rob's answer is the official answer. But I'd thought I'd share what I ended up doing as well, inspired by the comments and answers.
First, I fleshed out my "Problem" a little to include a nested structure:
struct Inner {
var ai:UInt16 = 0
var bi:UInt8 = 0
}
struct Thing {
var a:UInt8 = 0
var b:UInt32 = 0
var inner = Inner()
var c:UInt8 = 0
}
sizeof(Thing) // --> 12 :(
var thing = Thing(a: 0x42, b: 0xDEADBEAF, inner: Inner(ai: 0x1122, bi: 0xDD), c: 0x13)
var data = NSData(bytes: &thing, length: sizeof(Thing)) // --> <42000000 afbeadde 2211dd13> :(
For Arbitrary Packing, I stuck with the same generic approach:
protocol Packable {
func packed() -> [UInt8]
}
extension UInt8:Packable {
func packed() -> [UInt8] {
return [self]
}
}
extension UInt16:Packable {
func packed() -> [UInt8] {
return [(UInt8((self >> 0) & 0xFF)), (UInt8((self >> 8) & 0xFF))]
}
}
extension UInt32:Packable {
func packed() -> [UInt8] {
return [(UInt8((self >> 0) & 0xFF)), (UInt8((self >> 8) & 0xFF)), (UInt8((self >> 16) & 0xFF)), (UInt8((self >> 24) & 0xFF))]
}
}
extension Packable {
func packed() -> [UInt8] {
let mirror = Mirror(reflecting:self)
var bytes:[UInt8] = []
mirror.children.forEach { (label, child) in
switch child {
case let value as Packable:
bytes += value.packed()
default:
print("Don't know how to serialize \(child.dynamicType) (field \(label))")
}
}
return bytes
}
}
Being able to "pack" things is as easy adding them to the Packable protocol and telling them to pack themselves. For my cases above, I only need 3 different types of signed integers, but one could add lots more. For example, in my own code, I have some Enums derived from UInt8 which I added the packed method to.
extension Thing:Packable { }
extension Inner:Packable { }
var output = thing.packed()
output.count // --> 9 :)
data = NSData(bytes: &output, length: output.count) // --> <42afbead de2211dd 13> :)
To be able to unpack stuff, I came up with a little bit of support:
protocol UnpackablePrimitive {
static func unpack(inout input:IndexingGenerator<[UInt8]>) -> Self
}
extension UInt8:UnpackablePrimitive {
static func unpack(inout input:IndexingGenerator<[UInt8]>) -> UInt8 {
return input.next()!
}
}
extension UInt16:UnpackablePrimitive {
static func unpack(inout input:IndexingGenerator<[UInt8]>) -> UInt16 {
return UInt16(input.next()!) | (UInt16(input.next()!) << 8)
}
}
extension UInt32:UnpackablePrimitive {
static func unpack(inout input:IndexingGenerator<[UInt8]>) -> UInt32 {
return UInt32(input.next()!) | (UInt32(input.next()!) << 8) | (UInt32(input.next()!) << 16) | (UInt32(input.next()!) << 24)
}
}
With this, I can then add initializers to my high level structures, e.g.
extension Inner:Unpackable {
init(inout packed bytes:IndexingGenerator<[UInt8]>) {
self.init(ai: UInt16.unpack(&bytes), bi: UInt8.unpack(&bytes))
}
}
extension Thing:Unpackable {
init(inout packed bytes:IndexingGenerator<[UInt8]>) {
self.init(a: UInt8.unpack(&bytes), b: UInt32.unpack(&bytes), inner: Inner(packed:&bytes), c: UInt8.unpack(&bytes))
}
}
What I liked about this is that these initializers call the default initializer in the same order and types as the structure is defined. So if the structure changes in type or order, I have to revisit the (packed:) initializer. The kids a bit long, but not too.
What I didn't like about this, was having to pass the inout everywhere. I'm honestly not sure what the value is of value based generators, since passing them around you almost always want to share state. Kind of the whole point of reifying an object that captures the position of a stream of data, is to be able to share it. I also don't like having to specify IndexingGenerator directly, but I imagine there's some fu magic that would make that less specific and still work, but I'm not there yet.
I did play with something more pythonic, where I return a tuple of the type and the remainder of a passed array (rather than a stream/generator), but that wasn't nearly as easy to use at the top level init level.
I also tried putting the static methods as extensions on byte based generators, but you have to use a function (would rather have used a computed var with side effects) there whose name doesn't match a type, so you end up with something like
self.init(a: bytes._UInt8(), b: bytes._UInt32(), inner: Inner(packed:&bytes), c: bytes._UInt8())
This is shorter, but doesn't put the type like functions next to the argument names. And would require all kinds of application specific method names to be added as well as one extended the set of UnpackablePrimitives.

How to select 10 random cards (or numbers) from enum

i have some question about swift 2 random. I have an enum sub class of all cards example:
enum CardName : Int{
case Card2Heart = 0,
Card2Diamond,
Card2Club,
Card2Spade,
Card3Heart..... }
I want to select 10 random cards on the didMoveToView
To get a unique, random set of numbers you can do the following...
Using the Fisher-Yates shuffle from here... How do I shuffle an array in Swift?
You can do...
var numbers = Array(0...51)
numbers.shuffleInPlace()
let uniqueSelection = numbers[0..<10]
or...
let uniqueSelection = Array(0...51).shuffleInPlace()[0..<10]
This will create a random, unique selection of 10 numbers (cards) from the array of 52 cards that you start with.
You can then iterate this array to get the enums or create an array of all enums to start from etc... There are lots of ways to use this.
In Swift 4.2 (coming with Xcode 10) the task will become much easier:
enum CardName: CaseIterable {
case Card2Heart
case Card2Diamond
case Card2Club
case Card2Spade
case Card3Heart
// ...
}
let randomCard = CardName.allCases.randomElement()
print(randomCard)
let randomCards10 = CardName.allCases.shuffled().prefix(10)
print(randomCards10)
Note there is no need for the enum to inherit from Int.
Following your last comment, here's a little, simplified example with the constraint of having to keep your enum for making the cards.
We need to include the extensions linked by Fogmeister:
extension MutableCollectionType where Index == Int {
/// Shuffle the elements of `self` in-place.
mutating func shuffleInPlace() {
// empty and single-element collections don't shuffle
if count < 2 { return }
for i in 0..<count - 1 {
let j = Int(arc4random_uniform(UInt32(count - i))) + i
guard i != j else { continue }
swap(&self[i], &self[j])
}
}
}
extension CollectionType {
/// Return a copy of `self` with its elements shuffled
func shuffle() -> [Generator.Element] {
var list = Array(self)
list.shuffleInPlace()
return list
}
}
These extensions will allow us to shuffle an array of values.
Which array?
There's many ways, but the simplest option is probably to make an array of indices, which are simple integers (replace 52 with the actual number of cards in your enum):
Array(1...52) // [1, 2, 3, ... , 52]
We shuffle it:
Array(1...52).shuffle() // [33, 42, 7, ...]
Now we have an array of randomized indices. Let's make cards from this with your enum:
Array(0...51).shuffle().flatMap({ CardName(rawValue: $0) })
This is it, we have an array of cards in a random order:
let shuffledDeck = Array(0...51).shuffle().flatMap({ CardName(rawValue: $0) }) // [Card3Heart, Card2Diamond, ...]
and we can take cards from it:
func takeCardsFromDeck(number: Int) -> [CardName] {
if shuffledDeck.count > number {
let cards = Array(shuffledDeck[0..<number])
shuffledDeck.removeRange(0..<number)
return cards
}
return []
}
let tenRandomCards = takeCards(10)
Of course we need to remove from the deck the cards we've dealt, that way each card you draw is unique: we're using removeRange for that.
This example was kept simple on purpose: you still have to verify that there's enough cards in the deck before drawing, and lots of unsuspected other complexities. But it's so fun. ;)
If you want, you can search for additional inspiration in my implementation of these models and others (Deck, Dealer, Player, etc) in my PokerHands repository (MIT Licenced) on GitHub.
Swift 4.2
No need for these extensions anymore, we can use the .shuffle() and .shuffled() methods provided by Swift. Just remove the extensions, and rename the methods: the equivalent of our old "shuffleInPlace" is now .shuffle() and the equivalent of our old "shuffle" is now .shuffled().
Note: see Sulthan's answer for an even better solution using Swift 4.2.
Here is the shuffleInPlace() code that you are missing;
extension MutableCollectionType where Index == Int {
mutating func shuffleInPlace() {
if count < 2 { return }
for i in 0..<count - 1 {
let j = Int(arc4random_uniform(UInt32(count - i))) + i
guard i != j else { continue }
swap(&self[i], &self[j])
}
}
}
how to randomly spread enum values set
import Darwin // arc4random_uniform
enum E:Int {
case E1, E2, E3, E4, E5, E6, E7, E8, E9, E10
static var set:[E] { return (E.E1.rawValue...E.E10.rawValue).flatMap { E(rawValue: $0) }}
}
func spread(i:Int = 0, arr:[E])->([E],[E]) {
var i = i == 0 ? arr.count : i
var e:[E] = []
var arr = arr
while i > 0 && arr.count > 0 {
let idx = Int(arc4random_uniform(UInt32(arr.count-1)))
e.append(arr.removeAtIndex(idx))
i -= 1
}
return (e,arr)
}
let e1 = spread(3, arr: E.set)
let e2 = spread(2, arr: e1.1)
// ... spread the rest
let e3 = spread(arr: e2.1)
print(e1, e2, e3, separator:"\n")
/*
([E.E8, E.E6, E.E4], [E.E1, E.E2, E.E3, E.E5, E.E7, E.E9, E.E10])
([E.E1, E.E7], [E.E2, E.E3, E.E5, E.E9, E.E10])
([E.E5, E.E3, E.E2, E.E9, E.E10], [])
*/

How do you find a maximum value in a Swift dictionary?

So, say I have a dictionary that looks like this:
var data : [Float:Float] = [0:0,1:1,2:1.414,3:2.732,4:2,5:5.236,6:3.469,7:2.693,8:5.828,9:3.201]
How would I programmatically find the highest value in the dictionary? Is there a "data.max" command or something?
let maximum = data.reduce(0.0) { max($0, $1.1) }
Just a quick way using reduce.
or:
data.values.max()
Output:
print(maximum) // 5.828
A Swift Dictionary provides the max(by:) method. The Example from Apple is as follows:
let hues = ["Heliotrope": 296, "Coral": 16, "Aquamarine": 156]
let greatestHue = hues.max { a, b in a.value < b.value }
print(greatestHue)
// Prints "Optional(("Heliotrope", 296))"
Exist a function in the API, named maxElement you can use it very easy , that returns the maximum element in self or nil if the sequence is empty and that requires a strict weak ordering as closure in your case as you use a Dictionary. You can use like in the following example:
var data : [Float:Float] = [0:0,1:1,2:1.414,3:2.732,4:2,5:5.236,6:3.469,7:2.693,8:5.828,9:3.201]
let element = data.maxElement { $0.1 < $1.1} // (.0 8, .1 5.828)
And get the maximum value by the values, but you can change as you like to use it over the keys, it's up to you.
I hope this help you.
Honestly the solutions mentioned above - work, but they seem to be somewhat unclear to me as a newbie, so here is my solution to finding the max value in a Dictionary using SWIFT 5.3 in Xcode 12.0.1:
var someDictionary = ["One": 41, "Two": 17, "Three": 23]
func maxValue() {
let maxValueOfSomeDictionary = someDictionary.max { a, b in a.value < b.value }
print(maxValueOfSomeDictionary!.value)
}
maxValue()
After the dot notation (meaning the ".") put max and the code inside {} (curly braces) to compare the components of your Dictionary.
There are two methods to find max value in the dictionary.
First approach:
data.values.max
Second approach:
data.max { $0.value < $1.value}?.value
If you want to find max key:
data.max { $0.key < $1.key}?.key