MATLAB: Using a for loop within another function - matlab

I am trying to concatenate several structs. What I take from each struct depends on a function that requires a for loop. Here is my simplified array:
t = 1;
for t = 1:5 %this isn't the for loop I am asking about
a(t).data = t^2; %it just creates a simple struct with 5 data entries
end
Here I am doing concatenation manually:
A = [a(1:2).data a(1:3).data a(1:4).data a(1:5).data] %concatenation function
As you can see, the range (1:2), (1:3), (1:4), and (1:5) can be looped, which I attempt to do like this:
t = 2;
A = [for t = 2:5
a(1:t).data
end]
This results in an error "Illegal use of reserved keyword "for"."
How can I do a for loop within the concatenate function? Can I do loops within other functions in Matlab? Is there another way to do it, other than copy/pasting the line and changing 1 number manually?

You were close to getting it right! This will do what you want.
A = []; %% note: no need to initialize t, the for-loop takes care of that
for t = 2:5
A = [A a(1:t).data]
end
This seems strange though...you are concatenating the same elements over and over...in this example, you get the result:
A =
1 4 1 4 9 1 4 9 16 1 4 9 16 25
If what you really need is just the .data elements concatenated into a single array, then that is very simple:
A = [a.data]
A couple of notes about this: why are the brackets necessary? Because the expressions
a.data, a(1:t).data
don't return all the numbers in a single array, like many functions do. They return a separate answer for each element of the structure array. You can test this like so:
>> [b,c,d,e,f] = a.data
b =
1
c =
4
d =
9
e =
16
f =
25
Five different answers there. But MATLAB gives you a cheat -- the square brackets! Put an expression like a.data inside square brackets, and all of a sudden those separate answers are compressed into a single array. It's magic!
Another note: for very large arrays, the for-loop version here will be very slow. It would be better to allocate the memory for A ahead of time. In the for-loop here, MATLAB is dynamically resizing the array each time through, and that can be very slow if your for-loop has 1 million iterations. If it's less than 1000 or so, you won't notice it at all.
Finally, the reason that HBHB could not run your struct creating code at the top is that it doesn't work unless a is already defined in your workspace. If you initialize a like this:
%% t = 1; %% by the way, you don't need this, the t value is overwritten by the loop below
a = []; %% always initialize!
for t = 1:5 %this isn't the for loop I am asking about
a(t).data = t^2; %it just creates a simple struct with 5 data entries
end
then it runs for anyone the first time.

As an appendix to gariepy's answer:
The matrix concatenation
A = [A k];
as a way of appending to it is actually pretty slow. You end up reassigning N elements every time you concatenate to an N size vector. If all you're doing is adding elements to the end of it, it is better to use the following syntax
A(end+1) = k;
In MATLAB this is optimized such that on average you only need to reassign about 80% of the elements in a matrix. This might not seam much, but for 10k elements this adds up to ~ an order of magnitude of difference in time (at least for me).
Bare in mind that this works only in MATLAB 2012b and higher as described in this thead: Octave/Matlab: Adding new elements to a vector
This is the code I used. tic/toc syntax is not the most accurate method for profiling in MATLAB, but it illustrates the point.
close all; clear all; clc;
t_cnc = []; t_app = [];
N = 1000;
for n = 1:N;
% Concatenate
tic;
A = [];
for k = 1:n;
A = [A k];
end
t_cnc(end+1) = toc;
% Append
tic;
A = [];
for k = 1:n;
A(end+1) = k;
end
t_app(end+1) = toc;
end
t_cnc = t_cnc*1000; t_app = t_app*1000; % Convert to ms
% Fit a straight line on a log scale
P1 = polyfit(log(1:N),log(t_cnc),1); P_cnc = #(x) exp(P1(2)).*x.^P1(1);
P2 = polyfit(log(1:N),log(t_app),1); P_app = #(x) exp(P2(2)).*x.^P2(1);
% Plot and save
loglog(1:N,t_cnc,'.',1:N,P_cnc(1:N),'k--',...
1:N,t_app,'.',1:N,P_app(1:N),'k--');
grid on;
xlabel('log(N)');
ylabel('log(Elapsed time / ms)');
title('Concatenate vs. Append in MATLAB 2014b');
legend('A = [A k]',['O(N^{',num2str(P1(1)),'})'],...
'A(end+1) = k',['O(N^{',num2str(P2(1)),'})'],...
'Location','northwest');
saveas(gcf,'Cnc_vs_App_test.png');

Related

how to assign one value to a list of Objects in an efficient way in Matlab?

I want to assign one value to a list of objects in Matlab without using a for-loop (In order to increase efficiency)
Basically this works:
for i=1:Nr_of_Objects
Objectlist(i,1).weight=0.2
end
But I would like something like this:
Objectlist(:,1).weight=0.2
Which is not working. I get this error:
Expected one output from a curly brace or dot indexing expression, but there were 5 results.
Writing an array to the right hand side is also not working.
I`m not very familiar with object oriented programming in Matlab, so I would be happy if someone could help me.
Your looking for the deal function:
S(1,1).a = 1
S(2,1).a = 2
S(1,2).a = 3
[S(:,1).a] = deal(4)
Now S(1,1).a and S(2,1).a equal to 4.
In matlab you can concatenate several output in one array using []. And deal(X) copies the single input to all the requested outputs.
So in your case:
[Objectlist(:,1).weight] = deal(0.2)
Should work.
Noticed that I'm not sure that it will be faster than the for loop since I don't know how the deal function is implemented.
EDIT: Benchmark
n = 1000000;
[S(1:n,1).a] = deal(1);
tic
for ii=1:n
S(ii,1).a = 2;
end
toc
% Elapsed time is 3.481088 seconds
tic
[S(1:n,1).a] = deal(2);
toc
% Elapsed time is 0.472028 seconds
Or with timeit
n = 1000000;
[S(1:n,1).a] = deal(1);
g = #() func1(S,n);
h = #() func2(S,n);
timeit(g)
% ans = 3.67
timeit(h)
% ans = 0.41
function func1(S,n)
for ii=1:n
S(ii,1).a = 2;
end
end
function func2(S,n)
[S(1:n,1).a] = deal(2);
end
So it seems that using the deal function reduce the computational time.

Fast way to get mean values of rows accordingly to subscripts

I have a data, which may be simulated in the following way:
N = 10^6;%10^8;
K = 10^4;%10^6;
subs = randi([1 K],N,1);
M = [randn(N,5) subs];
M(M<-1.2) = nan;
In other words, it is a matrix, where the last row is subscripts.
Now I want to calculate nanmean() for each subscript. Also I want to save number of rows for each subscript. I have a 'dummy' code for this:
uniqueSubs = unique(M(:,6));
avM = nan(numel(uniqueSubs),6);
for iSub = 1:numel(uniqueSubs)
tmpM = M(M(:,6)==uniqueSubs(iSub),1:5);
avM(iSub,:) = [nanmean(tmpM,1) size(tmpM,1)];
end
The problem is, that it is too slow. I want it to work for N = 10^8 and K = 10^6 (see commented part in the definition of these variables.
How can I find the mean of the data in a faster way?
This sounds like a perfect job for findgroups and splitapply.
% Find groups in the final column
G = findgroups(M(:,6));
% function to apply per group
fcn = #(group) [mean(group, 1, 'omitnan'), size(group, 1)];
% Use splitapply to apply fcn to each group in M(:,1:5)
result = splitapply(fcn, M(:, 1:5), G);
% Check
assert(isequaln(result, avM));
M = sortrows(M,6); % sort the data per subscript
IDX = diff(M(:,6)); % find where the subscript changes
tmp = find(IDX);
tmp = [0 ;tmp;size(M,1)]; % add start and end of data
for iSub= 2:numel(tmp)
% Calculate the mean over just a single subscript, store in iSub-1
avM2(iSub-1,:) = [nanmean(M(tmp(iSub-1)+1:tmp(iSub),1:5),1) tmp(iSub)-tmp(iSub-1)];tmp(iSub-1)];
end
This is some 60 times faster than your original code on my computer. The speed-up mainly comes from presorting the data and then finding all locations where the subscript changes. That way you do not have to traverse the full array each time to find the correct subscripts, but rather you only check what's necessary each iteration. You thus calculate the mean over ~100 rows, instead of first having to check in 1,000,000 rows whether each row is needed that iteration or not.
Thus: in the original you check numel(uniqueSubs), 10,000 in this case, whether all N, 1,000,000 here, numbers belong to a certain category, which results in 10^12 checks. The proposed code sorts the rows (sorting is NlogN, thus 6,000,000 here), and then loop once over the full array without additional checks.
For completion, here is the original code, along with my version, and it shows the two are the same:
N = 10^6;%10^8;
K = 10^4;%10^6;
subs = randi([1 K],N,1);
M = [randn(N,5) subs];
M(M<-1.2) = nan;
uniqueSubs = unique(M(:,6));
%% zlon's original code
avM = nan(numel(uniqueSubs),7); % add the subscript for comparison later
tic
uniqueSubs = unique(M(:,6));
for iSub = 1:numel(uniqueSubs)
tmpM = M(M(:,6)==uniqueSubs(iSub),1:5);
avM(iSub,:) = [nanmean(tmpM,1) size(tmpM,1) uniqueSubs(iSub)];
end
toc
%%%%% End of zlon's code
avM = sortrows(avM,7); % Sort for comparison
%% Start of Adriaan's code
avM2 = nan(numel(uniqueSubs),6);
tic
M = sortrows(M,6);
IDX = diff(M(:,6));
tmp = find(IDX);
tmp = [0 ;tmp;size(M,1)];
for iSub = 2:numel(tmp)
avM2(iSub-1,:) = [nanmean(M(tmp(iSub-1)+1:tmp(iSub),1:5),1) tmp(iSub)-tmp(iSub-1)];
end
toc %tic/toc should not be used for accurate timing, this is just for order of magnitude
%%%% End of Adriaan's code
all(avM(:,1:6) == avM2) % Do the comparison
% End of script
% Output
Elapsed time is 58.561347 seconds.
Elapsed time is 0.843124 seconds. % ~70 times faster
ans =
1×6 logical array
1 1 1 1 1 1 % i.e. the matrices are equal to one another

insert value in a matrix in a for loop

I wrote this matlab code in order to concatenate the results of the integration of all the columns of a matrix extracted form a multi matrix array.
"datimf" is a matrix composed by 100 matrices, each of 224*640, vertically concatenated.
In the first loop i select every single matrix.
In the second loop i integrate every single column of the selected matrix
obtaining a row of 640 elements.
The third loop must concatenate vertically all the lines previously calculated.
Anyway i got always a problem with the third loop. Where is the error?
singleframe = zeros(224,640);
int_frame_all = zeros(1,640);
conc = zeros(100,640);
for i=0:224:(22400-224)
for j = 1:640
for k = 1:100
singleframe(:,:) = datimf([i+1:(i+223)+1],:);
int_frame_all(:,j) = trapz(singleframe(:,j));
conc(:,k) = vertcat(int_frame_all);
end
end
end
An alternate way to do this without using any explicit loops (edited in response to rayryeng's comment below. It's also worth noting that using cellfun may not be more efficient than explicitly looping.):
nmats = 100;
nrows = 224;
ncols = 640;
datimf = rand(nmats*nrows, ncols);
% convert to an nmats x 1 cell array containing each matrix
cellOfMats = mat2cell(datimf, ones(1, nmats)*nrows, ncols);
% Apply trapz to the contents of each cell
cellOfIntegrals = cellfun(#trapz, cellOfMats, 'UniformOutput', false);
% concatenate the results
conc = cat(1, cellOfIntegrals{:});
Taking inspiration from user2305193's answer, here's an even better "loop-free" solution, based on reshaping the matrix and applying trapz along the appropriate dimension:
datReshaped = reshape(datimf, nrows, nmats, ncols);
solution = squeeze(trapz(datReshaped, 1));
% verify solutions are equivalent:
all(solution(:) == conc(:)) % ans = true
I think I understand what you want. The third loop is unnecessary as both the inner and outer loops are 100 elements long. Also the way you have it you are assigning singleframe lots more times than necessary since it does not depend on the inner loops j or k. You were also trying to add int_frame_all to conc before int_frame_all was finished being populated.
On top of that the j loop isn't required either since trapz can operate on the entire matrix at once anyway.
I think this is closer to what you intended:
datimf = rand(224*100,640);
singleframe = zeros(224,640);
int_frame_all = zeros(1,640);
conc = zeros(100,640);
for i=1:100
idx = (i-1)*224+1;
singleframe(:,:) = datimf(idx:idx+223,:);
% for j = 1:640
% int_frame_all(:,j) = trapz(singleframe(:,j));
% end
% The loop is uncessary as trapz can operate on the entire matrix at once.
int_frame_all = trapz(singleframe,1);
%I think this is what you really want...
conc(i,:) = int_frame_all;
end
It looks like you're processing frames in a video.
The most efficent approach in my experience would be to reshape datimf to be 3-dimensional. This can easily be achieved with the reshape command.
something along the line of vid=reshape(datimf,224,640,[]); should get you far in this regard, where the 3rd dimension is time. vid(:,:,1) then would display the first frame of the video.

MATLAB list manipulation

Consider I have a code segment as follows:
Case 1
n = 20;
for i = 2 : n
mat = rand([2,i]);
mat = [mat, mat(:,1)]; %add the first column to the last
%feed the variable 'mat' to a function
end
Case 2
n = 10;
list = [];
for i = 1 : n
a = rand([2,1]);
b = rand([2,2])
list = [list, [a,b]];
end
In this way, MATLAB gives the below suggestion:
The variable 'mat' appears to change size on every loop. Consider preallocating for speed up.
The variable 'list' appears to change size on every loop. Consider preallocating for speed up.
I am a MATLAB newconer, So I would like to know how to deal with this issue. How to do this in native MATLAB style? Thanks in advance.
I'll focus on the second case, as it's the only one that makes sense:
n = 10;
list = [];
for i = 1 : n
a = rand([2,1]);
b = rand([2,2])
list = [list, [a,b]];
end
That you are doing here, for each loop, is to create two vectors with random numbers, a and b. a has dimension 2x1, and b has dimension 2x2. Then, you concatenate these two, with the matrix list.
Note that each call to rand are independent, so rand(2,3) will behave the same way [rand(2,2), rand(2,1)] does.
Now, since you loop 10 times, and you add rand(2,3) every time, you're essentially doing [rand(2,2), rand(2,1), rand(2,2), rand(2,1) ...]. This is equivalent to rand(2,30), which is a lot faster. Therefore, "Consider preallocating for speed up."
Now, if your concatenations doesn't contain random matrices, but are really the output from some function that can't output the entire matrix you want, then preallocate and insert it to the matrix using indices:
Let's define a few functions:
function x = loopfun(n)
x = n*[1; 2];
end
function list = myfun1(n)
list = zeros(2, n);
for ii = 1:n
list(:,ii) = loopfun(ii);
end
end
function list = myfun2(n)
list = [];
for ii = 1:n
list = [list, loopfun(ii)];
end
end
f1 = #() myfun1(100000); f2 = #() myfun2(100000);
fprintf('Preallocated: %f\nNot preallocated: %f\n', timeit(f1), timeit(f2))
Preallocated: 0.141617
Not preallocated: 0.318272
As you can see, the function with preallocation is twice as fast as the function with an increasing sized matrix. The difference is smaller if there are few iterations, but the general idea is the same.
f1 = #() myfun1(5); f2 = #() myfun2(5);
fprintf('Preallocated: %f\nNot preallocated: %f\n', timeit(f1), timeit(f2))
Preallocated: 0.000010
Not preallocated: 0.000018

Saving values of variable in MATLAB

Hi for my code I would like to know how to best save my variable column. column is 733x1. Ideally I would like to have
column1(y)=column, but I obtain the error:
Conversion to cell from logical is not possible.
in the inner loop. I find it difficult to access these stored values in overlap.
for i = 1:7
for y = 1:ydim % ydim = 436
%execute code %code produces different 'column' on each iteration
column1{y} = column; %'column' size 733x1 %altogether 436 sets of 'column'
end
overlap{i} = column1; %iterates 7 times.
end
Ideally I want overlap to store 7 variables saved that are (733x436).
Thanks.
I'm assuming column is calculated using a procedure where each column is dependent on the latter. If not, then there are very likely improvements that can be made to this:
column = zeros(733, 1); % Might not need this. Depends on you code.
all_columns = zeros(xdim, ydim); % Pre-allocate memory (always do this)
% Note that the first dimension is usually called x,
% and the second called y in MATLAB
overlap = cell(7, 1);
overlap(:) = {zeros(xdim, ydim)}; % Pre-allocate memory
for ii = 1:numel(overlap) % numel is better than length
for jj = 1:ydim % ii and jj are better than i and j
% several_lines_of_code_to_calculate_column
column = something;
all_columns(:, jj) = column;
end
overlap{ii} = all_columns;
end
You can access the variables in overlap like this: overlap{1}(1,1);. This will get the first element in the first cell. overlap{2} will get the entire matrix in the second cell.
You specified that you wanted 7 variables. Your code implies that you know that cells are better than assigning it to different variables (var1, var2 ...). Good! The solution with different variables is bad bad bad.
Instead of using a cell array, you could instead use a 3D-array. This might make processing later on faster, if you can vectorize stuff for instance.
This will be:
column = zeros(733, 1); % Might not need this. Depends on you code.
overlap = zeros(xdim, ydim, 7) % Pre-allocate memory for 3D-matrix
for ii = 1:7
for jj = 1:ydim
% several_lines_of_code_to_calculate_column
column = something;
all_column(:, jj, ii) = column;
end
end