convert pixel coordinates to map coordinates - matlab

I have an image A of dimension p x q. If I know the UTM coordinate of A(1,1) and A(p,q) and pixel size in meters.
How to convert the pixel coordinates to map coordinates in MATLAB?

Xsize = (1:p)*PixelSizeInMeter+UTM_x_onA11;
Ysize = (1:q)*PixelSizeInMeter+UTM_y_onA11;
figure;
surface(Xsize,Ysize,A);
Now you can plot your map using Xsize and Ysize. Since UTM is a Cartesian grid, life's quite easy: get the correct number of elements, multiply with the grid size and add the lower corner's coordinates to shift the plot to the correct location.

Related

Rotate image around world x axis

Having this coordinate system:
And this dominant vertical vanishing point:
I would like to rotate the image around x axis so the vanishing point is at infinity. That means that all vertical lines are parallel.
I am using matlab. I find the line segmentes using LSD and the vanishing point using homogeneous coordinates. I would like to use angle-axis representation, then convert it to a rotation matrix and pass this to imwarp and get the rotated image. Also would be good to know how to rotate the segments. The segments are as (x1,y1,x2,y2).
Image above example:
Vanishin point in homogenous coordinates:
(x,y,z) = 1.0e+05 * [0.4992 -2.2012 0.0026]
Vanishin point in cartesian coordinates (what you see in the image):
(x,y) = [190.1335 -838.3577]
Question: With this vanishing point how do I compute the rotation matrix in the world x axis as explained above?
If all you're doing is rotating the image so that the vector from the origin to the vanishing point, is instead pointing directly vertical, here's an example.
I = imread('cameraman.tif');
figure;imagesc(I);set(gcf,'colormap',gray);
vp=-[190.1335 -838.3577,0]; %3d version,just for cross-product use,-ve ?
y=[0,1,0]; %The vertical axis on the plot
u = cross(vp,y); %you know it's going to be the z-axis
theta = -acos(dot(vp/norm(vp),y)); %-ve ?
rotMat = vrrotvec2mat([u, theta]);
J=imwarp(I,affine2d (rotMat));
figure;imagesc(J);set(gcf,'colormap',gray); %tilted image
You can play with the negatives, and plotting, since I'm not sure about those parts applying to your situation. The negatives may come from plotting upside down, or from rotation of the world vs. camera coordinate system, but I don't have time to think about it right now.
EDIT
If you want to rotation about the X-axis, this might work (adapted from https://www.mathworks.com/matlabcentral/answers/113074-how-to-rotate-an-image-along-y-axis), or check out: Rotate image over X, Y and Z axis in Matlab
[rows, columns, numberOfColorChannels] = size(I);
newRows = rows * cos(theta);
rotatedImage = imresize(I, [newRows, columns]);

Quantifying pixels from a list of coordinates

I have a list of coordinates, which are generated from another program, and I have an image.
I'd like to load those coordinates (making circular regions of interest (ROIs) with a diameter of 3 pixels) onto my image, and extract the intensity of those pixels.
I can load/impose the coordinates on to the image by using;
imshow(file);
hold on
scatter(xCoords, yCoords, 'g')
But can not extract the intensity.
Can you guys point me in the right direction?
I am not sure what you mean by a circle with 3 pixels diameter since you are in a square grid (as mentioned by Ander Biguri). But you could use fspecial to create a disk filter and then normalize. Something like this:
r = 1.5; % for diameter = 3
h = fspecial('disk', r);
h = h/h(ceil(r),ceil(r));
You can use it as a mask to get the intensities at the given region of the image.
im = imread(file);
ROI = im(xCoord-1:xCoord+1; yCoord-1:yCoord+1);
I = ROI.*h;

How to detect certain moving points in a video using Matlab

I have a video of moving hose in an experiment and I need to detect certain points in that hose and calculate the amplitude of their movements, I am using the code below and I am able to extract the required point using detectSURFFeatures, the function get many unnecessary points so I am using cuba = ref_pts.selectStrongest(5); to choose only five points, the problem is I can not get a function to put a bounding box about this 5 points and get their pixel values through the video, Kindly advice what functions can be used, thanks :)
clear;
clc;
% Image aquisition from Video and converting into gray scale
vidIn = VideoReader('ItaS.mp4');
%% Load reference image, and compute surf features
ref_img = read(vidIn, 1);
ref_img_gray = rgb2gray(ref_img);
ref_pts = detectSURFFeatures(ref_img_gray);
[ref_features, ref_validPts] = extractFeatures(ref_img_gray, ref_pts);
figure; imshow(ref_img);
hold on; plot(ref_pts.selectStrongest(5));
cuba = ref_pts.selectStrongest(5);
stats1 = round(cuba.Location);
If you want to find the bounding box which covers all the five points you selected: stats1 now contains (x, y) coordinates of the selected 5 points. Find min and max for x and y coordinates. min values of x and y gives you the starting point of the rectangle. Width and height of the bounding box is now the difference of max and min in y and x directions.
If you want to extract the part of the original image inside the bounding box: just copy that part to another variable as you want. Consider the following example.
img2 = img1(y:h, x:w, :)
Here, x and y are the x and y coordinates of the top left corner of the bounding box. w and h are the width and height of the bounding box.

How to interpolate ECEF coordinates on an WGS84 ellipsoid

Is there a direct method (not involving converting the coordinates to lat/lon) to interpolate between 2 ECEF coordinates (xyz) in order for the interpolated point to be located on the WGS84 ellispoid. The original 2 points are computed from geodetic coordinates.
Interpolating on a sphere seem obvious but I can't seem to derive a solution for the ellipsoid.
Thank you in advance.
Let assume you got 2 points p0(x,y,z) and p1(x,y,z) and want to interpolate some p(t) where t=<0.0,1.0> between the two.
you can:
rescale your ellipsoid to sphere
simply like this:
const double mz=6378137.00000/6356752.31414; // [m] equatoreal/polar radius of Earth
p0.z*=mz;
p1.z*=mz;
now you got Cartesian coordinates refering to spherical Earth model.
interpolate
simple linear interpolation would do
p(t) = p0+(p1-p0)*t
but of coarse you also need to normalize to earth curvature so:
r0 = |p0|
r1 = |p1|
p(t) = p0+(p1-p0)*t
r(t) = r0+(r1-r0)*t
p(t)*=r/|p(t)|
where |p0| means length of vector p0.
rescale back to ellipsoid
by dividing with the same value
p(t).z/=mz
This is simple and cheap but the interpolated path will not have linear time scale.
Here C++ example:
void XYZ_interpolate(double *pt,double *p0,double *p1,double t)
{
const double mz=6378137.00000/6356752.31414;
const double _mz=6356752.31414/6378137.00000;
double p[3],r,r0,r1;
// compute spherical radiuses of input points
r0=sqrt((p0[0]*p0[0])+(p0[1]*p0[1])+(p0[2]*p0[2]*mz*mz));
r1=sqrt((p1[0]*p1[0])+(p1[1]*p1[1])+(p1[2]*p1[2]*mz*mz));
// linear interpolation
r = r0 +(r1 -r0 )*t;
p[0]= p0[0]+(p1[0]-p0[0])*t;
p[1]= p0[1]+(p1[1]-p0[1])*t;
p[2]=(p0[2]+(p1[2]-p0[2])*t)*mz;
// correct radius and rescale back
r/=sqrt((p[0]*p[0])+(p[1]*p[1])+(p[2]*p[2]));
pt[0]=p[0]*r;
pt[1]=p[1]*r;
pt[2]=p[2]*r*_mz;
}
And preview:
Yellow squares are the used p0,p1 Cartesian coordinates, the White curve is the interpolated path where t=<0.0,1.0> ...

Converting 3D point clouds to range image

I have many 3D point clouds gathered by velodyne sensor. eg(x, y, z) in meter.
I'd like to convert 3D point clouds to range image.
Firstly, I've got transformtation from Catesian to spherical coordinate.
r = sqrt(x*x + y*y + z*z)
azimuth angle = atan2(x, z)
elevation angle = asin(y/r)
Now. How can I convert 3D point to Range image using these transformation in matlab?
Whole points are about 180,000 and I want 870*64 range image.
azimuth angle range(-180 ~ 180), elevation angle range(-15 ~ 15)
Divide up your azimuth and elevation into M and N ranges respectively. Now you have M*N "bins" (M = 870, N = 64).
Then (per bin) accumulate a histogram of points that project into that bin.
Finally, pick a representative value from each bin for the final range image. You could pick the average value (noisy, fast) or fit some distribution and then use that to pick the value (more precise, slow).
The pointcloud2image code available from Matlab File Exchange can help you to directly convert point cloud (in x,y,z format) to 2D raster image.