I have function with a few type parameters. How to tell compiler that these types are actually in type class?
trait Sizeable[-T, +R] {
def mySize(x: T): R
}
implicit object StringSize extends Sizeable[String, Int] {
def mySize(s: String) = s.length
}
def sum[T, R: Sizeable[T, R]](xs: List[T]): R = xs.map(x => x.mySize)
The error is:
Error:(9, 14) A$A40.this.Sizeable[T,R] does not take type parameters
def sum[T, R: Sizeable[T, R]](xs: List[T]): R = xs.map(x => x.mySize);}
You can't use a context bound in this case. You'll have to write the implicit parameter explicitly:
def foo[T, R](xs: List[T])(implicit sizeable: Sizeable[T,R]): List[R] =
xs.map(x => sizeable.mySize(x))
Related
When I have a function in Scala:
def toString[T: Show](xs: T*): String = paths.map(_.show).mkString
And the following type class instances in scope:
implicit val showA: Show[MyTypeA]
implicit val showB: Show[MyTypeB]
I can use function toString in the following ways:
val a1: MyTypeA
val a2: MyTypeA
val stringA = toString(a1, a2)
val b1: MyTypeB
val b2: MyTypeB
val stringB = toString(b1, b2)
But I cannot call toString mixing parameters of type MyTypeA and MyTypeB:
// doesn't compile, T is inferred to be of type Any
toString(a1, b1)
Is it possible to redefine toString in such a way that it becomes possible to mix parameters of different types (but only for which a Show typeclass is available)?
Note that I am aware of the cats show interpolator which solves this specific example, but I'm looking for a solution which can be applied to different cases as well (e.g. toNumber).
I am also aware of circumventing the problem by calling .show on the parameters before passing them to the toString function, but I'm looking for a way to avoid this as it results in code duplication.
Example with shapeless:
object myToString extends ProductArgs { //ProductArgs allows changing variable number of arguments to HList
//polymorphic function to iterate over values of HList and change to a string using Show instances
object showMapper extends Poly1 {
implicit def caseShow[V](implicit show: Show[V]): Case.Aux[V, String] = {
at[V](v => show.show(v))
}
}
def applyProduct[ARepr <: HList](
l: ARepr
)(
implicit mapper: Mapper[showMapper.type, ARepr]
): String = l.map(showMapper).mkString("", "", "")
}
Now let's test it:
case class Test1(value: String)
case class Test2(value: String)
case class Test3(value: String)
implicit val show1: Show[Test1] = Show.show(_.value)
implicit val show2: Show[Test2] = Show.show(_.value)
println(myToString(Test1("a"), Test2("b"))) //"ab"
println(myToString(Test1("a"), Test2("b"), Test3("c"))) //won't compile since there's no instance of Show for Test3
By the way, I think toString is not the best name, because probably it can cause weird conflicts with toString from java.lang.Object.
If you don't want to mess with shapeless, another solution that comes to my mind is to just create functions with different arity:
def toString[A: Show](a: A): String = ???
def toString[A: Show, B: Show](a: A, b: B): String = ???
//etc
It's definitely cumbersome, but it might be the easiest way to solve your problem.
Here's one way to do it in Dotty (note that most of the Dotty-specific features used here are not necessary; they're just to make life easier, but being able to abstract over tuples of different arities is something you can't do (easily) in Scala 2):
opaque type Show[T] = T => String
opaque type ShowTuple[T <: Tuple] = T => String
object ShowTuple {
given ShowTuple[EmptyTuple] = _ => ""
given showTuple[H, T <: Tuple](using show: Show[H], showTail: ShowTuple[T]) as ShowTuple[H *: T] =
{ case h *: t => show(h) + "," + showTail(t) }
}
def multiToString[T <: Tuple](t: T)(using showTuple: ShowTuple[T]) =
showTuple(t)
It can be used like this:
class TypeA(val i: Int)
class TypeB(val s: String)
class TypeC(val b: Boolean)
given Show[TypeA] = t => s"TypeA(${t.i})"
given Show[TypeB] = t => s"TypeB(${t.s})"
given Show[TypeC] = t => s"TypeC(${t.b})"
println(multiToString((new TypeA(10), new TypeB("foo"), new TypeC(true))))
Using a type for which an implicit is not given fails:
class TypeD
multiToString((new TypeA(10), new TypeB("foo"), new TypeC(true), new TypeD))
Try it in Scastie
What is the type of paths?
If it's List[T] then there should be an implicit Show[T] in scope.
If it's List[Any] then there should be an implicit Show[Any] in scope.
If paths contains elements of different types and paths is not a List[Any] then paths shouldn't be a List[...] at all. It can be of type L <: HList. You can try
import shapeless.{HList, HNil, Poly1, Poly2}
import shapeless.ops.hlist.{LeftReducer, Mapper}
trait Show[T] {
def show(t: T): String
}
implicit class ShowOps[T](t: T) {
def show(implicit s: Show[T]): String = s.show(t)
}
object show extends Poly1 {
implicit def cse[T: Show]: Case.Aux[T, String] = at(_.show)
}
object concat extends Poly2 {
implicit def cse: Case.Aux[String, String, String] = at(_ + _)
}
def toString[L <: HList, L1 <: HList](xs: L)(implicit
mapper: Mapper.Aux[show.type, L, L1],
reducer: LeftReducer.Aux[L1, concat.type, String]
): String = xs.map(show).reduceLeft(concat)
type MyTypeA
type MyTypeB
implicit val showA: Show[MyTypeA] = ???
implicit val showB: Show[MyTypeB] = ???
val a1: MyTypeA = ???
val b1: MyTypeB = ???
toString(a1 :: b1 :: HNil)
I'd like to make a method that take a vector or a seq of of some type, let's say Int, and calls filter on it.
For example:
implicit class SharedOps[F](xs: F)(implicit ev: OneOf[F, Seq[Int] ::: Vector[Int] ::: HSNil]) {
def filter(x: Int):F = xs.filter({a:Int => a == x})
}
OneOf basically checks that F is either a Seq[Int] or a Vector[Int]
The tricky part is that I want the filter to return the same type as the input (e.g. Seq[Int] or Vector[Int]) but compiler is complaining
error: type mismatch;
found : scala.this.Function1[scala.this.Int,scala.this.Boolean]
required: scala.this.Int
def filter(x: Int):F = xs.filter({a:Int => a == x})
Somehow compiler forgot I started with a collection of sorts and thinks xs is a single thing.
So I changed the design:
implicit class SharedOps2[A,F[A]<:TraversableLike[A,A]](xs: F[A])(implicit ev: OneOf[F[A], Seq[Int] ::: Vector[Int] ::: HSNil]) {
def filter(x: A): F[A] = xs.filter({ a: Int => a == x })
}
Now compiler is complaining that: Expression of type A doesn't conform to expected type F[A]
Not sure how to take it from here. I'd like to avoid shapeless coproducts at this point.
For completeness here's the OneOf code:
sealed trait HSubset // HList
#implicitNotFound("No member of type class HSubset in scope for ${H}")
trait :::[+H, +T <: HSubset] extends HSubset // HCons ::
sealed trait HSNil extends HSubset // HNil
#implicitNotFound("No member of type class BelongsTo in scope for ${T}")
trait BelongsTo[T, U <: HSubset]
object BelongsTo {
implicit def baseCase[H, U <: HSubset]: BelongsTo[H, H ::: U] = null
implicit def recursiveCase[H, U <: HSubset, T](implicit ev: T BelongsTo U): T BelongsTo (H ::: U) = null
}
#implicitNotFound("No member of type class SubsetOf in scope for ${U} ${T}")
trait SubsetOf[U <: HSubset, T <: HSubset]
object SubsetOf {
implicit def baseCase[U1, U <: HSubset](implicit s: U1 BelongsTo U): SubsetOf[U1 ::: HSNil, U] = null
implicit def recursiveCase[U <: HSubset, T1, T <: HSubset](implicit ev1: T1 BelongsTo U, ev2: T SubsetOf U): (T1 ::: T) SubsetOf U = null
}
trait OneOf[T, U <: HSubset]
object OneOf {
implicit def baseCase[U <: HSubset, T](implicit s: T BelongsTo U): T OneOf U = null
implicit def recursiveCase[T, Ev <: HSubset, Target <: HSubset](implicit ev1: T OneOf Ev, ev2: Ev SubsetOf Target): T OneOf Target = null
}
This is the proposed typeclas.
My advice would be to use specific types like List & Vector instead of Seq.
trait Filter[F[_]] {
def filter[A](fa: F[A])(p: A => Boolean): F[A]
}
object Filter {
implicit final val VectorFilter: Filter[Vector] =
new Filter[Vector] {
override final def filter[A](vector: Vector[A])(p: A => Boolean): Vector[A] =
vector.filter(p)
}
implicit final val SeqFilter: Filter[Seq] =
new Filter[Seq] {
override final def filter[A](seq: Seq[A])(p: A => Boolean): Seq[A] =
seq.filter(p)
}
}
object syntax {
object filter {
implicit class FilterOps[F[_], A](private val fa: F[A]) extends AnyVal {
#inline
final def filter(p: A => Boolean)(implicit ev: Filter[F]): F[A] =
ev.filter(fa)(p)
}
}
}
import syntax.filter._
def foo[F[_] : Filter](xs: F[Int]): F[Int] =
xs.filter(i => (i % 2) == 0)
Which you can use like:
foo(Vector(1, 2, 3))
// res: Vector[Int] = Vector(2)
foo(List(1, 2, 3))
// could not find implicit value for evidence parameter of type ammonite.$sess.cmd0.Filter[List]
foo(Seq(1, 2, 3))
// res: Seq[Int] = List(2)
BTW, it is worth mentioning that such typeclass already exists in cats
TraversableLike.filter returns Repr, which is type passed as second type parameter to TraversableLike. You need F[A] there instead of A. This compiles for me:
implicit class SharedOps2[A,F[A]<:TraversableLike[A,F[A]]](xs: F[A])(implicit ev: OneOf[F[A], Seq[A] ::: Vector[A] ::: HSNil]) {
def filter(x: A): F[A] = xs.filter({ a: A => a == x })
}
Note also type of a changed to A, because this is the type inside F[A] collection.
fiddle
I'm trying to write a function which re-uses the implicit conversions which I have for Object A -> Object B when they are wrapped in an Option in a generic way so that Option[A] -> Option[B] conversions also work.
What I've come up with is:
implicit def fromOptionToOption[A, B](from: Option[A])(implicit conversion: (A) => B): Option[B] = from.map(conversion(_))
This works when I assign a Some(..) to a value but not when I assign an Option val; see the following console output:
scala> trait T
defined trait T
scala> case class Foo(i: Int) extends T
defined class Foo
scala> case class Bar(i: Int) extends T
defined class Bar
scala> implicit def fromFooToBar(f: Foo):Bar = Bar(f.i)
fromFooToBar: (f: Foo)Bar
scala> implicit def fromBarToFoo(b: Bar):Foo = Foo(b.i)
fromBarToFoo: (b: Bar)Foo
scala> implicit def fromOptionToOption[A, B](from: Option[A])(implicit conversion: (A) => B): Option[B] = from.map(conversion(_))
fromOptionToOption: [A, B](from: Option[A])(implicit conversion: (A) => B)Option[B]
scala> val foo: Option[Foo] = Some(Bar(1))
foo: Option[Foo] = Some(Foo(1))
// THIS WORKS as expected
scala> val fooOpt = Some(Foo(4))
fooOpt: Some[Foo] = Some(Foo(4))
scala> val barOpt2: Option[Bar] = fooOpt
<console>:16: error: type mismatch;
found : Some[Foo]
required: Option[Bar]
val barOpt2: Option[Bar] = fooOpt
^
//THIS FAILS.
I don't really see the difference between the first and second conversion. Somehow it doesn't invoke the implicit conversion in the latter. I guess it has something to do with the type system, but I can't see how just yet. Any ideas?
-Albert
(I'm on scala 2.9.1)
Here's clue:
scala> val fooOpt: Option[Bar] = Option(Foo(1))
fooOpt: Option[Bar] = Some(Bar(1))
And another:
scala> implicit def foobar(x: String): Int = augmentString(x).toInt
foobar: (x: String)Int
scala> val y: Option[String] = Option(1)
y: Option[String] = Some(1)
scala> val y: Option[Int] = Option("1")
y: Option[Int] = Some(1)
Looks like a legitimately odd bug. I'd pop open a smaller test case and open an issue (or search for one in JIRA).
As an aside:
You could use some category theory to handle lots of different types of "Option-ish" things.
package object fun {
trait Functor[Container[_]] {
def fmap[A,B](x: Container[A], f: A => B): Container[B]
}
object Functor {
implicit object optionFunctor extends Functor[Option] {
override def fmap[A,B](x: Option[A], f: A => B): Option[B] = x map f
}
// Note: With some CanBuildFrom magic, we can support Traversables here.
}
implicit def liftConversion[F[_], A, B](x: F[A])(implicit f: A => B, functor: Functor[F]): F[B] =
functor.fmap(x,f)
}
That's a bit more advanced, as you're mapping some category theory FP onto the problem, but it's a more general solution to lift implicit conversations into containers as needed. Notice how they chain by using one implicit conversation method that takes a more limited implicit argument.
ALSO, this should make the examples work:
scala> val tmp = Option(Foo(1))
tmp: Option[Foo] = Some(Foo(1))
scala> val y: Option[Bar] = tmp
y: Option[Bar] = Some(Bar(1))
And make your usage of Some more dangerous:
scala> val tmp = Some(Foo(1))
tmp: Some[Foo] = Some(Foo(1))
scala> val y: Option[Bar] = tmp
<console>:25: error: could not find implicit value for parameter functor: fun.Functor[Some]
val y: Option[Bar] = tmp
^
That's telling you that variance is critical, and interacts with implicits. My guess is you ran into a very rare, probably hard to fix bug that can be avoided using other techniques.
You might not be aware of it, but there's a flag for that: -Xlog-implicits. And this is what it says:
scala> val barOpt2: Option[Bar] = fooOpt
fromOptionToOption is not a valid implicit value for Some[Foo] => Option[Bar] because:
incompatible: (from: Option[Foo])(implicit conversion: Foo => B)Option[B] does not match expected type Some[Foo] => Option[Bar]
<console>:16: error: type mismatch;
found : Some[Foo]
required: Option[Bar]
val barOpt2: Option[Bar] = fooOpt
^
And there you go -- it doesn't know what type B must be. 0__ mentioned that this problem doesn't happen with invariant collections, and that makes some sense. In invariant collections, B must be exactly Bar, while for covariant collections it could be any subtype of Bar.
So, why does val foo: Option[Foo] = Some(Bar(1)) work? Well, there's a flag for that too... -Ytyper-debug. Not for the weak, however, given the extreme verbosity.
I waddled through anyway, comparing what happens in both cases, and the answer is rather simple... it's not the Option that is being converted in that case, but Bar! Remember, you declared an implicit conversion from Bar => Foo, so it is applying that conversion before passing the result to Some!
It doesn't work because the Scala Language Specification defines view as follows:
Implicit parameters and methods can also define implicit conversions called views. A view from type S to type T is defined by an implicit value which has function type S=>T or (=>S)=>T or by a method convertible to a value of that type.
fromOptionToOption doesn't conform to the three categories since it takes an implicit parameter. Compiler doesn't seem to find converter with both destination and source having generic type.
Defining a view from Option[Foo] to Option[Bar] works as expected.
trait T
case class Foo(i: Int) extends T
case class Bar(i: Int) extends T
object Main {
implicit def fromFooToBar(f: Foo):Bar = Bar(f.i)
implicit def fromBarToFoo(b: Bar):Foo = Foo(b.i)
// implicit def fromOptionToOption[A, B](from: Option[A])(implicit conversion: (A) => B): Option[B] =
// from.map(conversion(_))
implicit def fromOptionFooToOptionBar(o: Option[Foo]): Option[Bar] = o map { foo => foo }
def test(): Option[Bar] = {
val fooOpt = Some(Foo(4))
val barOpt2: Option[Bar] = fooOpt
barOpt2
}
}
println(Main.test)
Running this prints out:
$ scala so.scala
Some(Bar(4))
However, all is not lost. It's not as nice as general Option to Option, but we can do something like anything that can turn into Bar to Option[Bar] by view bound.
trait T
case class Foo(i: Int) extends T
case class Bar(i: Int) extends T
object Main {
implicit def fromFooToBar(f: Foo):Bar = Bar(f.i)
implicit def fromBarToFoo(b: Bar):Foo = Foo(b.i)
implicit def fromOptionToOptionBar[A <% Bar](from: Option[A]): Option[Bar] =
from map { foo => foo }
def test(): Option[Bar] = {
val fooOpt = Some(Foo(4))
val barOpt2: Option[Bar] = fooOpt
barOpt2
}
}
println(Main.test)
Here's another workaround that can be used for general Option to Option but requires extra .convert call:
trait T
case class Foo(i: Int) extends T
case class Bar(i: Int) extends T
case class Converter[A](x: Option[A]) {
def convert[B](implicit ev: Function1[A, B]): Option[B] = x map { a: A => ev(a) }
}
object Main {
implicit def optionToConverter[A](x: Option[A]) = Converter(x)
implicit def fooToBar(x: Foo) = Bar(x.i)
def test(): Option[Bar] = {
val fooOpt = Some(Foo(4))
val barOpt: Option[Bar] = fooOpt.convert
barOpt
}
}
println(Main.test)
Indeed it's a very strange problem. I tried to use another type than Option, and it turns out that the problem is that Option is covariant in its type parameter. This works all:
case class A[B](value: B) // invariant in B
case class X()
case class Y()
implicit def xtoy(x: X): Y = Y()
implicit def ytox(x: Y): X = X()
implicit def movea[U, V](from: A[U])(implicit view: U => V): A[V] = A[V](from.value)
def test(a: A[Y]) = "ok"
test(A(X())) // (1)
val f = A(X())
test(f) // (2)
But if instead I define A as
case class A[+B](value: B) // covariant in B
The case (2) fails. Case (1) always succeeds, because Scala already converts X to Y before wrapping it in an A.
Now that we know the problem source, you need to wait for a type guru to explain why this is actually a problem... The conversion is still valid, you see:
askForY(movea(f)) // succeeds, even with A[+B]
I improved #jseureth answer and added support for Traversable:
trait Mappable[A, B, C[_]] {
def apply(f: A => B): C[B]
}
package object app {
implicit class OptionMappable[A, B, C[X] <: Option[X]](option: C[A]) extends Mappable[A, B, Option] {
override def apply(f: A => B): Option[B] = option.map(f)
}
implicit class TraversableMappable[A, B, C[X] <: Traversable[X]](traversable: C[A])
(implicit cbf: CanBuildFrom[C[A], B, C[B]]) extends Mappable[A, B, C] {
override def apply(f: A => B): C[B] = {
val builder = cbf(traversable)
builder.sizeHint(traversable)
builder ++= traversable.map(f)
builder.result()
}
}
implicit def liftConversion[C[_], A, B](x: C[A])
(implicit f: A => B, m: C[A] => Mappable[A, B, C]): C[B] = m(x)(f)
}
Now you can implicitly convert options and traversables:
implicit def f(i: Int): String = s"$i"
val a: Option[String] = Some(1)
val b: Seq[String] = Seq(1, 2, 3)
I'm trying to express the following idea:
Function caseClassFields should return an array of (String, T) pairs, by processing a case class.
I put upper bound for T, expecting that it should be a subtype of AnyRef or AnyRef itself.
Here is a function:
def caseClassFields[T <: AnyRef](obj: AnyRef): Array[(String, T)] = {
val metaClass = obj.getClass
metaClass.getDeclaredFields.map {
field => {
field.setAccessible(true)
(field.getName, field.get(obj))
}
}
}
But unfortunately I get following error:
Expression of type Array[(String, AnyRef)] doesn't conform to expected type Array[(String, T)]
How to fix this?
Doing what you want with reflection and keeping type safety are orthogonal requirements. But shapeless, a library for generic derivation, can do what you want and still keep you type safe.
Here's a short example using shapeless to get you started.
We first define our algebra:
sealed trait ValidatableField
case class ValidatableString(value: Boolean)
extends ValidatableField
case class ValidatableInt(value: Boolean) extends ValidatableField
case class ValidatableRecord(fields: List[(String, ValidatableField)])
extends ValidatableField
Now we define our validator trait:
trait Validator[T] {
def validate(value: T): ValidatableField
}
trait RecordValidator[T] extends Validator[T] {
def validate(value: T): ValidatableRecord
}
Now lets define, for the sake of the example, validation on Int and String:
implicit val intValidator = new Validator[Int] {
override def validate(t: Int): ValidatableField = ValidatableInt(t > 42)
}
implicit val stringValidator = new Validator[String] {
override def validate(t: String): ValidatableField = ValidatableString(t.length < 42)
}
Now we define a generic implementation for HList which will cover our ValidatableRecord which is the generic representation of our case class:
implicit val hnilEncoder: RecordValidator[HNil] = new RecordValidator[HNil] {
override def validate(value: HNil): ValidatableRecord = ValidatableRecord(Nil)
}
implicit def hlistValidator[K <: Symbol, H, T <: HList](
implicit witness: Witness.Aux[K],
hEncoder: Lazy[Validator[H]],
tEncoder: RecordValidator[T]
): RecordValidator[FieldType[K, H] :: T] = {
val fieldName = witness.value.name
new RecordValidator[::[FieldType[K, H], T]] {
override def validate(value: ::[FieldType[K, H], T]): ValidatableRecord = {
val head = hEncoder.value.validate(value.head)
val tail = tEncoder.validate(value.tail)
ValidatableRecord((fieldName, head) :: tail.fields)
}
}
}
implicit def genericEncoder[A, H <: HList](
implicit generic: LabelledGeneric.Aux[A, H],
hEncoder: Lazy[RecordValidator[H]]): Validator[A] = {
new RecordValidator[A] {
override def validate(value: A): ValidatableRecord =
hEncoder.value.validate(generic.to(value))
}
}
With this much code, we can now validate any case class which has a String and Int field in it, and it is trivial to add other validator for more primitives:
object Test {
def main(args: Array[String]): Unit = {
case class Foo(s: String, i: Int)
val foo = Foo("hello!", 42)
println(Validator[Foo].validate(foo))
}
}
Yields:
ValidatableRecord(List((s,ValidatableString(true)), (i,ValidatableInt(false))))
I know this can be overwhelming a bit, but David Gurnells "Guide To Shapeless" is a great place to get started.
The reason is field.get(obj) returns AnyRef while your return type is T. Therefore, you need to convert it into T. However, I don't see any use of Generic type T in your code, so you can simply change the return type to Array[(String, AnyRef)].
def caseClassFields[T <: AnyRef](obj: AnyRef): Array[(String, AnyRef)]
However, if you insist to use Generic, you need to convert field.get(obj) to type T. Note, that you might get exception in case of invalid type while converting to type T.
def caseClassFields[T <: AnyRef](obj: AnyRef): Array[(String, T)] = {
val metaClass = obj.getClass
metaClass.getDeclaredFields.map {
field => {
field.setAccessible(true)
(field.getName, field.get(obj).asInstanceOf[T])
}
}
}
case class Foo(name:String)
val result:Array[(String, String)] = caseClassFields[String](Foo("bar"))
As discussed in the comments you probably want to use shapeless, but to elaborate.
The method field.get() isnt related to the type parameter. Normally you would use a type parameter like this
def caseClassFields[T <: AnyRef](obj: T): Array[(String, T)] = ???
or this ..
def caseClassFields[T <: AnyRef](obj: Container[T]): Array[(String, T)] = ???
If there was some link between field.get and T it could work, but the relationship would need to be proven to the compiler. As the T can be anything the compiler cant prove anything about it.
I can strongly recommend this book the 'Type Astronaut’s Guide to Shapeless' as a intro to the topic.
http://underscore.io/books/shapeless-guide/
https://github.com/milessabin/shapeless
Given:
trait Foo[A]
class B
and then the following implicit def:
implicit def f[A](b: B)(implicit ev: Foo[A]): String = "foo"
I attempted to resolve B => String implicitly, but it failed to compile:
scala> implicitly[B => String]
<console>:15: error: No implicit view available from B => String.
implicitly[B => String]
^
I'm guessing that the implicit Foo[A] is throwing a wrench, so to speak, in my implicit resolution of B => String.
How can I adjust the implicitly's argument, i..e B => String, so that the above compiles?
Similar code using typeclass rather than implicit conversion:
trait MyFunT[A] extends (A => String)
object MyFunT {
/**Factory to easily define an instance from a fun */
def apply[A](f: A => String): MyFunT[A] = new MyFunT[A] {
def apply(a: A): String = f(a)
}
}
implicit def foo[A](implicit ev: Foo[A]) = MyFunT[A] { a: A => /* do something with `a` and `ev` */ "foo" }
Even if implicits based/requiring other implicit are usual, I would advice to take care not to have "too long chain" about that.