area under the curve programatically in scala - scala

im trying to solve for the area under the curve of the example 1 of: http://tutorial.math.lamar.edu/Classes/CalcI/AreaProblem.aspx
f(x) = x^3 - 5x^2 + 6x + 5 and the x-axis n = 5
the answers says it is: 25.12
but i'm getting a slightly less: 23.78880035448074
what im i doing wrong??
here's my code:
import scala.math.BigDecimal.RoundingMode
def summation(low: Int, up: Int, coe: List[Int], ex: List[Int]) = {
def eva(coe: List[Int], ex: List[Int], x: Double) = {
(for (i <- 0 until coe.size) yield coe(i) * math.pow(x,ex(i))).sum
}
#annotation.tailrec
def build_points(del: Float, p: Int, xs : List[BigDecimal]): List[BigDecimal] = {
if(p <= 0 ) xs map { x => x.setScale(3, RoundingMode.HALF_EVEN)}
else build_points(del, p - 1, ((del * p):BigDecimal ):: xs)
}
val sub = 5
val diff = (up - low).toFloat
val deltaX = diff / sub
val points = build_points(deltaX, sub, List(0.0f)); println(points)
val middle_points =
(for (i <- 0 until points.size - 1) yield (points(i) + points(i + 1)) / 2)
(for (elem <- middle_points) yield deltaX * eva(coe,ex,elem.toDouble)).sum
}
val coe = List(1,-5,6,5)
val exp = List(3,2,1,0)
print(summation(0,4,coe,exp))

I'm guessing the problem is that the problem is build_points(deltaX, 5, List(0.0f)) returns a list with 6 elements instead of 5. The problem is that you are passing a list with one element in the beginning, where I'm guessing you wanted an empty list, like
build_points(deltaX, sub, Nil)

Related

SCALA: Generating a list of Tuple2 objects meeting some criteria

I want to generate a list of Tuple2 objects. Each tuple (a,b) in the list should meeting the conditions:a and b both are perfect squares,(b/30)<a<b
and a>N and b>N ( N can even be a BigInt)
I am trying to write a scala function to generate the List of Tuples meeting the above requirements?
This is my attempt..it works fine for Ints and Longs..But for BigInt there is sqrt problem I am facing..Here is my approach in coding as below:
scala> def genTups(N:Long) ={
| val x = for(s<- 1L to Math.sqrt(N).toLong) yield s*s;
| val y = x.combinations(2).map{ case Vector(a,b) => (a,b)}.toList
| y.filter(t=> (t._1*30/t._2)>=1)
| }
genTups: (N: Long)List[(Long, Long)]
scala> genTups(30)
res32: List[(Long, Long)] = List((1,4), (1,9), (1,16), (1,25), (4,9), (4,16), (4,25), (9,16), (9,25), (16,25))
Improved this using BigInt square-root algorithm as below:
def genTups(N1:BigInt,N2:BigInt) ={
def sqt(n:BigInt):BigInt = {
var a = BigInt(1)
var b = (n>>5)+BigInt(8)
while((b-a) >= 0) {
var mid:BigInt = (a+b)>>1
if(mid*mid-n> 0) b = mid-1
else a = mid+1
}; a-1 }
val x = for(s<- sqt(N1) to sqt(N2)) yield s*s;
val y = x.combinations(2).map{ case Vector(a,b) => (a,b)}.toList
y.filter(t=> (t._1*30/t._2)>=1)
}
I appreciate any help to improve in my algorithm .
You can avoid sqrt in you algorithm by changing the way you calculate x to this:
val x = (BigInt(1) to N).map(x => x*x).takeWhile(_ <= N)
The final function is then:
def genTups(N: BigInt) = {
val x = (BigInt(1) to N).map(x => x*x).takeWhile(_ <= N)
val y = x.combinations(2).map { case Vector(a, b) if (a < b) => (a, b) }.toList
y.filter(t => (t._1 * 30 / t._2) >= 1)
}
You can also re-write this as a single chain of operations like this:
def genTups(N: BigInt) =
(BigInt(1) to N)
.map(x => x * x)
.takeWhile(_ <= N)
.combinations(2)
.map { case Vector(a, b) if a < b => (a, b) }
.filter(t => (t._1 * 30 / t._2) >= 1)
.toList
In a quest for performance, I came up with this recursive version that appears to be significantly faster
def genTups(N1: BigInt, N2: BigInt) = {
def sqt(n: BigInt): BigInt = {
var a = BigInt(1)
var b = (n >> 5) + BigInt(8)
while ((b - a) >= 0) {
var mid: BigInt = (a + b) >> 1
if (mid * mid - n > 0) {
b = mid - 1
} else {
a = mid + 1
}
}
a - 1
}
#tailrec
def loop(a: BigInt, rem: List[BigInt], res: List[(BigInt, BigInt)]): List[(BigInt, BigInt)] =
rem match {
case Nil => res
case head :: tail =>
val a30 = a * 30
val thisRes = rem.takeWhile(_ <= a30).map(b => (a, b))
loop(head, tail, thisRes.reverse ::: res)
}
val squares = (sqt(N1) to sqt(N2)).map(s => s * s).toList
loop(squares.head, squares.tail, Nil).reverse
}
Each recursion of the loop adds all the matching pairs for a given value of a. The result is built in reverse because adding to the front of a long list is much faster than adding to the tail.
Firstly create a function to check if number if perfect square or not.
def squareRootOfPerfectSquare(a: Int): Option[Int] = {
val sqrt = math.sqrt(a)
if (sqrt % 1 == 0)
Some(sqrt.toInt)
else
None
}
Then, create another func that will calculate this list of tuples according to the conditions mentioned above.
def generateTuples(n1:Int,n2:Int)={
for{
b <- 1 to n2;
a <- 1 to n1 if(b>a && squareRootOfPerfectSquare(b).isDefined && squareRootOfPerfectSquare(a).isDefined)
} yield ( (a,b) )
}
Then on calling the function with parameters generateTuples(5,10)
you will get an output as
res0: scala.collection.immutable.IndexedSeq[(Int, Int)] = Vector((1,4), (1,9), (4,9))
Hope that helps !!!

type mismatch in scala when using reduce

Can anybody help me understand what's wrong with the code below?
case class Point(x: Double, y: Double)
def centroid(points: IndexedSeq[Point]): Point = {
val x = points.reduce(_.x + _.x)
val y = points.reduce(_.y + _.y)
val len = points.length
Point(x/len, y/len)
}
I get the error when I run it:
Error:(10, 30) type mismatch;
found : Double
required: A$A145.this.Point
val x = points.reduce(_.x + _.x)
^
reduce, in this case, takes a function of type (Point, Point) => Point and returns a Point.
One way to calculate the centroid:
case class Point(x: Double, y: Double)
def centroid(points: IndexedSeq[Point]): Point = {
val x = points.map(_.x).sum
val y = points.map(_.y).sum
val len = points.length
Point(x/len, y/len)
}
If you want to use reduce you need to reduce both x and y in a single pass like this
def centroid(points: IndexedSeq[Point]): Point = {
val p = points.reduce( (s, p) => Point(s.x + p.x, s.y + p.y) )
val len = points.length
Point(p.x/len, p.y/len)
}
If you want to compute x and y independently then use foldLeft rather than reduce like this
def centroid(points: IndexedSeq[Point]): Point = {
val x = points.foldLeft(0.0)(_ + _.x)
val y = points.foldLeft(0.0)(_ + _.y)
val len = points.length
Point(x/len, y/len)
}
This is perhaps clearer but does process the points twice so it may be marginally less efficient.

Collatz - maximum number of steps and the corresponding number

I am trying to write a Scala function that takes an upper bound as argument and calculates the steps for the numbers in a range from 1 up to this bound. It had to return the maximum number of steps and the corresponding number that needs that many steps. (as a pair - first element is the number of steps and second is the corresponding index)
I already have created a function called "collatz" which computes the number of steps. I am very new with Scala and I am a bit stuck because of the limitations. Here's how I thought to start the function:
def max(x:Int):Int = {
for (i<-(1 to x).toList) yield collatz(i)
the way I think to solve this problem is to: 1. iterate through the range and apply collatz to all elements while putting them in a new list which stores the number of steps. 2. find the maximum of the new list by using List.max 3. Use List.IndexOf to find the index. However, I'm really stuck since I don't know how to do this without using var (and only using val). Thanks!
Something like this:
def collatzMax(n: Long): (Long, Long) = {
require(n > 0, "Collatz function is not defined for n <= 0")
def collatz(n: Long, steps: Long): Long = n match {
case n if (n <= 1) => steps
case n if (n % 2 == 0) => collatz(n / 2, steps + 1)
case n if (n % 2 == 1) => collatz(3 * n + 1, steps + 1)
}
def loop(n: Long, current: Long, acc: List[(Long, Long)]): List[(Long, Long)] =
if (current > n) acc
else {
loop(n, current + 1, collatz(current, 0) -> current :: acc)
}
loop(n, 1, Nil).sortBy(-_._1).head
}
Example:
collatzMax(12)
result: (Long, Long) = (19,9) // 19 steps for collatz(9)
Using for:
def collatzMax(n: Long) =
(for(i <- 1L to n) yield collatz(i) -> i).sortBy(-_._1).head
Or(continuing your idea):
def maximum(x: Long): (Long, Long) = {
val lst = for (i <- 1L to x) yield collatz(i)
val maxValue = lst.max
(maxValue, lst.indexOf(maxValue) + 1)
}
Try:
(1 to x).map(collatz).maxBy(_._2)._1

Scala functional solution for spoj "Prime Generator"

I worked on the Prime Generator problem for almost 3 days.
I want to make a Scala functional solution(which means "no var", "no mutable data"), but every time it exceed the time limitation.
My solution is:
object Main {
def sqrt(num: Int) = math.sqrt(num).toInt
def isPrime(num: Int): Boolean = {
val end = sqrt(num)
def isPrimeHelper(current: Int): Boolean = {
if (current > end) true
else if (num % current == 0) false
else isPrimeHelper(current + 1)
}
isPrimeHelper(2)
}
val feedMax = sqrt(1000000000)
val feedsList = (2 to feedMax).filter(isPrime)
val feedsSet = feedsList.toSet
def findPrimes(min: Int, max: Int) = (min to max) filter {
num => if (num <= feedMax) feedsSet.contains(num)
else feedsList.forall(p => num % p != 0 || p * p > num)
}
def main(args: Array[String]) {
val total = readLine().toInt
for (i <- 1 to total) {
val Array(from, to) = readLine().split("\\s+")
val primes = findPrimes(from.toInt, to.toInt)
primes.foreach(println)
println()
}
}
}
I'm not sure where can be improved. I also searched a lot, but can't find a scala solution(most are c/c++ ones)
Here is a nice fully functional scala solution using the sieve of eratosthenes: http://en.literateprograms.org/Sieve_of_Eratosthenes_(Scala)#chunk def:ints
Check out this elegant and efficient one liner by Daniel Sobral: http://dcsobral.blogspot.se/2010/12/sieve-of-eratosthenes-real-one-scala.html?m=1
lazy val unevenPrimes: Stream[Int] = {
def nextPrimes(n: Int, sqrt: Int, sqr: Int): Stream[Int] =
if (n > sqr) nextPrimes(n, sqrt + 1, (sqrt + 1)*(sqrt + 1)) else
if (unevenPrimes.takeWhile(_ <= sqrt).exists(n % _ == 0)) nextPrimes(n + 2, sqrt, sqr)
else n #:: nextPrimes(n + 2, sqrt, sqr)
3 #:: 5 #:: nextPrimes(7, 3, 9)
}

Integer partitioning in Scala

Given n ( say 3 people ) and s ( say 100$ ), we'd like to partition s among n people.
So we need all possible n-tuples that sum to s
My Scala code below:
def weights(n:Int,s:Int):List[List[Int]] = {
List.concat( (0 to s).toList.map(List.fill(n)(_)).flatten, (0 to s).toList).
combinations(n).filter(_.sum==s).map(_.permutations.toList).toList.flatten
}
println(weights(3,100))
This works for small values of n. ( n=1, 2, 3 or 4).
Beyond n=4, it takes a very long time, practically unusable.
I'm looking for ways to rework my code using lazy evaluation/ Stream.
My requirements : Must work for n upto 10.
Warning : The problem gets really big really fast. My results from Matlab -
---For s =100, n = 1 thru 5 results are ---
n=1 :1 combinations
n=2 :101 combinations
n=3 :5151 combinations
n=4 :176851 combinations
n=5: 4598126 combinations
---
You need dynamic programming, or memoization. Same concept, anyway.
Let's say you have to divide s among n. Recursively, that's defined like this:
def permutations(s: Int, n: Int): List[List[Int]] = n match {
case 0 => Nil
case 1 => List(List(s))
case _ => (0 to s).toList flatMap (x => permutations(s - x, n - 1) map (x :: _))
}
Now, this will STILL be slow as hell, but there's a catch here... you don't need to recompute permutations(s, n) for numbers you have already computed. So you can do this instead:
val memoP = collection.mutable.Map.empty[(Int, Int), List[List[Int]]]
def permutations(s: Int, n: Int): List[List[Int]] = {
def permutationsWithHead(x: Int) = permutations(s - x, n - 1) map (x :: _)
n match {
case 0 => Nil
case 1 => List(List(s))
case _ =>
memoP getOrElseUpdate ((s, n),
(0 to s).toList flatMap permutationsWithHead)
}
}
And this can be even further improved, because it will compute every permutation. You only need to compute every combination, and then permute that without recomputing.
To compute every combination, we can change the code like this:
val memoC = collection.mutable.Map.empty[(Int, Int, Int), List[List[Int]]]
def combinations(s: Int, n: Int, min: Int = 0): List[List[Int]] = {
def combinationsWithHead(x: Int) = combinations(s - x, n - 1, x) map (x :: _)
n match {
case 0 => Nil
case 1 => List(List(s))
case _ =>
memoC getOrElseUpdate ((s, n, min),
(min to s / 2).toList flatMap combinationsWithHead)
}
}
Running combinations(100, 10) is still slow, given the sheer numbers of combinations alone. The permutations for each combination can be obtained simply calling .permutation on the combination.
Here's a quick and dirty Stream solution:
def weights(n: Int, s: Int) = (1 until s).foldLeft(Stream(Nil: List[Int])) {
(a, _) => a.flatMap(c => Stream.range(0, n - c.sum + 1).map(_ :: c))
}.map(c => (n - c.sum) :: c)
It works for n = 6 in about 15 seconds on my machine:
scala> var x = 0
scala> weights(100, 6).foreach(_ => x += 1)
scala> x
res81: Int = 96560646
As a side note: by the time you get to n = 10, there are 4,263,421,511,271 of these things. That's going to take days just to stream through.
My solution of this problem, it can computer n till 6:
object Partition {
implicit def i2p(n: Int): Partition = new Partition(n)
def main(args : Array[String]) : Unit = {
for(n <- 1 to 6) println(100.partitions(n).size)
}
}
class Partition(n: Int){
def partitions(m: Int):Iterator[List[Int]] = new Iterator[List[Int]] {
val nums = Array.ofDim[Int](m)
nums(0) = n
var hasNext = m > 0 && n > 0
override def next: List[Int] = {
if(hasNext){
val result = nums.toList
var idx = 0
while(idx < m-1 && nums(idx) == 0) idx = idx + 1
if(idx == m-1) hasNext = false
else {
nums(idx+1) = nums(idx+1) + 1
nums(0) = nums(idx) - 1
if(idx != 0) nums(idx) = 0
}
result
}
else Iterator.empty.next
}
}
}
1
101
5151
176851
4598126
96560646
However , we can just show the number of the possible n-tuples:
val pt: (Int,Int) => BigInt = {
val buf = collection.mutable.Map[(Int,Int),BigInt]()
(s,n) => buf.getOrElseUpdate((s,n),
if(n == 0 && s > 0) BigInt(0)
else if(s == 0) BigInt(1)
else (0 to s).map{k => pt(s-k,n-1)}.sum
)
}
for(n <- 1 to 20) printf("%2d :%s%n",n,pt(100,n).toString)
1 :1
2 :101
3 :5151
4 :176851
5 :4598126
6 :96560646
7 :1705904746
8 :26075972546
9 :352025629371
10 :4263421511271
11 :46897636623981
12 :473239787751081
13 :4416904685676756
14 :38393094575497956
15 :312629484400483356
16 :2396826047070372396
17 :17376988841260199871
18 :119594570260437846171
19 :784008849485092547121
20 :4910371215196105953021