I have run LDA with MATLAB using the fitcdiscr function and predict.
I have a feeling there may be some bugs in my code however and as a sanity check would like to identify which features are being most heavily weighted in the classification.
Can this be done?
There is a Coeffs field in your fitted object containing all the relevant information http://uk.mathworks.com/help/stats/classificationdiscriminant-class.html
In particular, if you fit a linear LDA there will be Linear field which is the linear operator used for projection. However, one should bear in mind that value of coefficients of linear models are not feature importances. There is much more in that to consider. Weight can be big because your feature have small values or because there is a highly biased distribution of the values. If you need feature selection technique - use feature selection methods (like L1 regularized models) otherwise you might easily get wrong conclusions from your data.
(Note: This is intended to be a community Wiki.)
Suppose I have a set of points xi = {x0,x1,x2,...xn} and corresponding function values fi = f(xi) = {f0,f1,f2,...,fn}, where f(x) is, in general, an unknown function. (In some situations, we might know f(x) ahead of time, but we want to do this generally, since we often don't know f(x) in advance.) What's a good way to approximate the derivative of f(x) at each point xi? That is, how can I estimate values of dfi == d/dx fi == df(xi)/dx at each of the points xi?
Unfortunately, MATLAB doesn't have a very good general-purpose, numerical differentiation routine. Part of the reason for this is probably because choosing a good routine can be difficult!
So what kinds of methods are there? What routines exist? How can we choose a good routine for a particular problem?
There are several considerations when choosing how to differentiate in MATLAB:
Do you have a symbolic function or a set of points?
Is your grid evenly or unevenly spaced?
Is your domain periodic? Can you assume periodic boundary conditions?
What level of accuracy are you looking for? Do you need to compute the derivatives within a given tolerance?
Does it matter to you that your derivative is evaluated on the same points as your function is defined?
Do you need to calculate multiple orders of derivatives?
What's the best way to proceed?
These are just some quick-and-dirty suggestions. Hopefully somebody will find them helpful!
1. Do you have a symbolic function or a set of points?
If you have a symbolic function, you may be able to calculate the derivative analytically. (Chances are, you would have done this if it were that easy, and you would not be here looking for alternatives.)
If you have a symbolic function and cannot calculate the derivative analytically, you can always evaluate the function on a set of points, and use some other method listed on this page to evaluate the derivative.
In most cases, you have a set of points (xi,fi), and will have to use one of the following methods....
2. Is your grid evenly or unevenly spaced?
If your grid is evenly spaced, you probably will want to use a finite difference scheme (see either of the Wikipedia articles here or here), unless you are using periodic boundary conditions (see below). Here is a decent introduction to finite difference methods in the context of solving ordinary differential equations on a grid (see especially slides 9-14). These methods are generally computationally efficient, simple to implement, and the error of the method can be simply estimated as the truncation error of the Taylor expansions used to derive it.
If your grid is unevenly spaced, you can still use a finite difference scheme, but the expressions are more difficult and the accuracy varies very strongly with how uniform your grid is. If your grid is very non-uniform, you will probably need to use large stencil sizes (more neighboring points) to calculate the derivative at a given point. People often construct an interpolating polynomial (often the Lagrange polynomial) and differentiate that polynomial to compute the derivative. See for instance, this StackExchange question. It is often difficult to estimate the error using these methods (although some have attempted to do so: here and here). Fornberg's method is often very useful in these cases....
Care must be taken at the boundaries of your domain because the stencil often involves points that are outside the domain. Some people introduce "ghost points" or combine boundary conditions with derivatives of different orders to eliminate these "ghost points" and simplify the stencil. Another approach is to use right- or left-sided finite difference methods.
Here's an excellent "cheat sheet" of finite difference methods, including centered, right- and left-sided schemes of low orders. I keep a printout of this near my workstation because I find it so useful.
3. Is your domain periodic? Can you assume periodic boundary conditions?
If your domain is periodic, you can compute derivatives to a very high order accuracy using Fourier spectral methods. This technique sacrifices performance somewhat to gain high accuracy. In fact, if you are using N points, your estimate of the derivative is approximately N^th order accurate. For more information, see (for example) this WikiBook.
Fourier methods often use the Fast Fourier Transform (FFT) algorithm to achieve roughly O(N log(N)) performance, rather than the O(N^2) algorithm that a naively-implemented discrete Fourier transform (DFT) might employ.
If your function and domain are not periodic, you should not use the Fourier spectral method. If you attempt to use it with a function that is not periodic, you will get large errors and undesirable "ringing" phenomena.
Computing derivatives of any order requires 1) a transform from grid-space to spectral space (O(N log(N))), 2) multiplication of the Fourier coefficients by their spectral wavenumbers (O(N)), and 2) an inverse transform from spectral space to grid space (again O(N log(N))).
Care must be taken when multiplying the Fourier coefficients by their spectral wavenumbers. Every implementation of the FFT algorithm seems to have its own ordering of the spectral modes and normalization parameters. See, for instance, the answer to this question on the Math StackExchange, for notes about doing this in MATLAB.
4. What level of accuracy are you looking for? Do you need to compute the derivatives within a given tolerance?
For many purposes, a 1st or 2nd order finite difference scheme may be sufficient. For higher precision, you can use higher order Taylor expansions, dropping higher-order terms.
If you need to compute the derivatives within a given tolerance, you may want to look around for a high-order scheme that has the error you need.
Often, the best way to reduce error is reducing the grid spacing in a finite difference scheme, but this is not always possible.
Be aware that higher-order finite difference schemes almost always require larger stencil sizes (more neighboring points). This can cause issues at the boundaries. (See the discussion above about ghost points.)
5. Does it matter to you that your derivative is evaluated on the same points as your function is defined?
MATLAB provides the diff function to compute differences between adjacent array elements. This can be used to calculate approximate derivatives via a first-order forward-differencing (or forward finite difference) scheme, but the estimates are low-order estimates. As described in MATLAB's documentation of diff (link), if you input an array of length N, it will return an array of length N-1. When you estimate derivatives using this method on N points, you will only have estimates of the derivative at N-1 points. (Note that this can be used on uneven grids, if they are sorted in ascending order.)
In most cases, we want the derivative evaluated at all points, which means we want to use something besides the diff method.
6. Do you need to calculate multiple orders of derivatives?
One can set up a system of equations in which the grid point function values and the 1st and 2nd order derivatives at these points all depend on each other. This can be found by combining Taylor expansions at neighboring points as usual, but keeping the derivative terms rather than cancelling them out, and linking them together with those of neighboring points. These equations can be solved via linear algebra to give not just the first derivative, but the second as well (or higher orders, if set up properly). I believe these are called combined finite difference schemes, and they are often used in conjunction with compact finite difference schemes, which will be discussed next.
Compact finite difference schemes (link). In these schemes, one sets up a design matrix and calculates the derivatives at all points simultaneously via a matrix solve. They are called "compact" because they are usually designed to require fewer stencil points than ordinary finite difference schemes of comparable accuracy. Because they involve a matrix equation that links all points together, certain compact finite difference schemes are said to have "spectral-like resolution" (e.g. Lele's 1992 paper--excellent!), meaning that they mimic spectral schemes by depending on all nodal values and, because of this, they maintain accuracy at all length scales. In contrast, typical finite difference methods are only locally accurate (the derivative at point #13, for example, ordinarily doesn't depend on the function value at point #200).
A current area of research is how best to solve for multiple derivatives in a compact stencil. The results of such research, combined, compact finite difference methods, are powerful and widely applicable, though many researchers tend to tune them for particular needs (performance, accuracy, stability, or a particular field of research such as fluid dynamics).
Ready-to-Go Routines
As described above, one can use the diff function (link to documentation) to compute rough derivatives between adjacent array elements.
MATLAB's gradient routine (link to documentation) is a great option for many purposes. It implements a second-order, central difference scheme. It has the advantages of computing derivatives in multiple dimensions and supporting arbitrary grid spacing. (Thanks to #thewaywewalk for pointing out this glaring omission!)
I used Fornberg's method (see above) to develop a small routine (nderiv_fornberg) to calculate finite differences in one dimension for arbitrary grid spacings. I find it easy to use. It uses sided stencils of 6 points at the boundaries and a centered, 5-point stencil in the interior. It is available at the MATLAB File Exchange here.
Conclusion
The field of numerical differentiation is very diverse. For each method listed above, there are many variants with their own set of advantages and disadvantages. This post is hardly a complete treatment of numerical differentiation.
Every application is different. Hopefully this post gives the interested reader an organized list of considerations and resources for choosing a method that suits their own needs.
This community wiki could be improved with code snippets and examples particular to MATLAB.
I believe there is more in to these particular questions. So I have elaborated on the subject further as follows:
(4) Q: What level of accuracy are you looking for? Do you need to compute the derivatives within a given tolerance?
A: The accuracy of numerical differentiation is subjective to the application of interest. Usually the way it works is, if you are using the ND in forward problem to approximate the derivatives to estimate features from signal of interest, then you should be aware of noise perturbations. Usually such artifacts contain high frequency components and by the definition of the differentiator, the noise effect will be amplified in the magnitude order of $i\omega^n$. So, increasing the accuracy of differentiator (increasing the polynomial accuracy) will no help at all. In this case you should be able to cancelt the effect of noise for differentiation. This can be done in casecade order: first smooth the signal, and then differentiate. But a better way of doing this is to use "Lowpass Differentiator". A good example of MATLAB library can be found here.
However, if this is not the case and you're using ND in inverse problems, such as solvign PDEs, then the global accuracy of differentiator is very important. Depending on what kind of bounady condition (BC) suits your problem, the design will be adapted accordingly. The rule of thump is to increase the numerical accuracy known is the fullband differentiator. You need to design a derivative matrix that takes care of suitable BC. You can find comprehensive solutions to such designs using the above link.
(5) Does it matter to you that your derivative is evaluated on the same points as your function is defined?
A: Yes absolutely. The evaluation of the ND on the same grid points is called "centralized" and off the points "staggered" schemes. Note that using odd order of derivatives, centralized ND will deviate the accuracy of frequency response of the differentiator. Therefore, if you're using such design in inverse problems, this will perturb your approximation. Also, the opposite applies to the case of even order of differentiation utilized by staggered schemes. You can find comprehensive explanation on this subject using the link above.
(6) Do you need to calculate multiple orders of derivatives?
This totally depends on your application at hand. You can refer to the same link I have provided and take care of multiple derivative designs.
I have a problem with these two equations showing in the pictures.
I have two vectors represented the C(m) and S(m) in the two equations. I am trying to implement these equations in Matlab. Instead of doing a continuous integral operation, I think I should do the summation. For example, the first equation
A1 = sqrt(sum(C.^2));
Am I right? Also, I am not sure how to implement equation two that contains a ||dM||. Please help.
What are the mathematical meaning of these two equations? I think the first one may related to the 'sum of squares', if C(m) is a vector then this equation will measure the total variance of the random variable in vector C or some kind of average of vector C? What about the second one?
Thanks very much for your help!
A.
In MATLAB there are typically two different ways to do an integration.
For people who have access to the symbolic toolbox, algebraic integration is an option. If this is the case for you, I would look into help int and see which inputs you need.
For the rest, numerical integration is available, this basically means that you just calculate a function on a lot of points and then take the mean of the function values in these points.
For the mathematical meaning some more context would be helpful, and you may want to ask this question at math.stackexchange.com or on the site of whatever field you are in. (stats, physics?)
I am studying Support Vector Machines (SVM) by reading a lot of material. However, it seems that most of it focuses on how to classify the input 2D data by mapping it using several kernels such as linear, polynomial, RBF / Gaussian, etc.
My first question is, can SVM handle high-dimensional (n-D) input data?
According to what I found, the answer is YES!
If my understanding is correct, n-D input data will be
constructed in Hilbert hyperspace, then those data will be
simplified by using some approaches (such as PCA ?) to combine it together / project it back to 2D plane, so that
the kernel methods can map it into an appropriate shape such a line or curve can separate it into distinguish groups.
It means most of the guides / tutorials focus on step (3). But some toolboxes I've checked cannot plot if the input data greater than 2D. How can the data after be projected to 2D?
If there is no projection of data, how can they classify it?
My second question is: is my understanding correct?
My first question is, does SVM can handle high-dimensional (n-D) input data?
Yes. I have dealt with data where n > 2500 when using LIBSVM software: http://www.csie.ntu.edu.tw/~cjlin/libsvm/. I used linear and RBF kernels.
My second question is, does it correct my understanding?
I'm not entirely sure on what you mean here, so I'll try to comment on what you said most recently. I believe your intuition is generally correct. Data is "constructed" in some n-dimensional space, and a hyperplane of dimension n-1 is used to classify the data into two groups. However, by using kernel methods, it's possible to generate this information using linear methods and not consume all the memory of your computer.
I'm not sure if you've seen this already, but if you haven't, you may be interested in some of the information in this paper: http://pyml.sourceforge.net/doc/howto.pdf. I've copied and pasted a part of the text that may appeal to your thoughts:
A kernel method is an algorithm that depends on the data only through dot-products. When this is the case, the dot product can be replaced by a kernel function which computes a dot product in some possibly high dimensional feature space. This has two advantages: First, the ability to generate non-linear decision boundaries using methods designed for linear classifiers. Second, the use of kernel functions allows the user to apply a classifier to data that have no obvious fixed-dimensional vector space representation. The prime example of such data in bioinformatics are sequence, either DNA or protein, and protein structure.
It would also help if you could explain what "guides" you are referring to. I don't think I've ever had to project data on a 2-D plane before, and it doesn't make sense to do so anyway for data with a ridiculous amount of dimensions (or "features" as it is called in LIBSVM). Using selected kernel methods should be enough to classify such data.
This question could refer to any computer algebra system which has the ability to compute the Groebner Basis from a set of polynomials (Mathematica, Singular, GAP, Macaulay2, MatLab, etc.).
I am working with an overdetermined system of polynomials for which the full groebner basis is too difficult to compute, however it would be valuable for me to be able to print out the groebner basis elements as they are found so that I may know if a particular polynomial is in the groebner basis. Is there any way to do this?
If you implement Buchberger's algorithm on your own, then you can simply print out the elements as the are found.
If you have Mathematica, you can use this code as your starting point.
https://www.msu.edu/course/mth/496/snapshot.afs/groebner.m
See the function BuchbergerSteps.
Due to the way the Buchberger algorithm works (see, for instance, Wikipedia or IVA), the partial results that you could obtain by printing intermediate results are not guaranteed to constitute a Gröbner basis.
Depending on your ultimate goal, you may want to try instead an algorithm for triangularization of ideals, such as Ritt-Wu's algorithm (see IVA or Shang-Ching Chou's book). This is somewhat similar to reduction to row echelon form in Linear Algebra, and you may interrupt the algorithm at any point to get a partially reduced system of polynomial equations.