Having made some progress in the geometry side of things I'm moving on to putting together an entire scene. That scene has a couple dozen objects, each defined by a bounding cube whose corners are specified by two SCNVector3s (originally two sets of x,y,z).
Here's an example of what I have so far - it's an 11-element log-periodic antenna, like the old school TV antennas from the 70s. Each of the grey lines is an "element", typically made of aluminum rod. I used SCNCylinders from +ve to -ve Y and the entire thing is less than 100 lines (SK is pretty amazing).
The problem is what happens if the elements are not symmetrical across X and thus the SCNCylinder has to be rotated. I found this example, but I can't understand the specifics... it appears to take advantage of the fact that a sphere is symmetric so angles kind of "go away".
Does anyone have a general function that will take two 3D points and return the SCNVector3 suitable for setting the node's eulerAngle, or a similar solution?
Both solutions mentioned above work very well and I can contribute third solution to this question.
//extension code starts
func normalizeVector(_ iv: SCNVector3) -> SCNVector3 {
let length = sqrt(iv.x * iv.x + iv.y * iv.y + iv.z * iv.z)
if length == 0 {
return SCNVector3(0.0, 0.0, 0.0)
}
return SCNVector3( iv.x / length, iv.y / length, iv.z / length)
}
extension SCNNode {
func buildLineInTwoPointsWithRotation(from startPoint: SCNVector3,
to endPoint: SCNVector3,
radius: CGFloat,
color: UIColor) -> SCNNode {
let w = SCNVector3(x: endPoint.x-startPoint.x,
y: endPoint.y-startPoint.y,
z: endPoint.z-startPoint.z)
let l = CGFloat(sqrt(w.x * w.x + w.y * w.y + w.z * w.z))
if l == 0.0 {
// two points together.
let sphere = SCNSphere(radius: radius)
sphere.firstMaterial?.diffuse.contents = color
self.geometry = sphere
self.position = startPoint
return self
}
let cyl = SCNCylinder(radius: radius, height: l)
cyl.firstMaterial?.diffuse.contents = color
self.geometry = cyl
//original vector of cylinder above 0,0,0
let ov = SCNVector3(0, l/2.0,0)
//target vector, in new coordination
let nv = SCNVector3((endPoint.x - startPoint.x)/2.0, (endPoint.y - startPoint.y)/2.0,
(endPoint.z-startPoint.z)/2.0)
// axis between two vector
let av = SCNVector3( (ov.x + nv.x)/2.0, (ov.y+nv.y)/2.0, (ov.z+nv.z)/2.0)
//normalized axis vector
let av_normalized = normalizeVector(av)
let q0 = Float(0.0) //cos(angel/2), angle is always 180 or M_PI
let q1 = Float(av_normalized.x) // x' * sin(angle/2)
let q2 = Float(av_normalized.y) // y' * sin(angle/2)
let q3 = Float(av_normalized.z) // z' * sin(angle/2)
let r_m11 = q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3
let r_m12 = 2 * q1 * q2 + 2 * q0 * q3
let r_m13 = 2 * q1 * q3 - 2 * q0 * q2
let r_m21 = 2 * q1 * q2 - 2 * q0 * q3
let r_m22 = q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3
let r_m23 = 2 * q2 * q3 + 2 * q0 * q1
let r_m31 = 2 * q1 * q3 + 2 * q0 * q2
let r_m32 = 2 * q2 * q3 - 2 * q0 * q1
let r_m33 = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3
self.transform.m11 = r_m11
self.transform.m12 = r_m12
self.transform.m13 = r_m13
self.transform.m14 = 0.0
self.transform.m21 = r_m21
self.transform.m22 = r_m22
self.transform.m23 = r_m23
self.transform.m24 = 0.0
self.transform.m31 = r_m31
self.transform.m32 = r_m32
self.transform.m33 = r_m33
self.transform.m34 = 0.0
self.transform.m41 = (startPoint.x + endPoint.x) / 2.0
self.transform.m42 = (startPoint.y + endPoint.y) / 2.0
self.transform.m43 = (startPoint.z + endPoint.z) / 2.0
self.transform.m44 = 1.0
return self
}
}
//extension ended.
//in your code, you can like this.
let twoPointsNode1 = SCNNode()
scene.rootNode.addChildNode(twoPointsNode1.buildLineInTwoPointsWithRotation(
from: SCNVector3(1,-1,3), to: SCNVector3( 7,11,7), radius: 0.2, color: .cyan))
//end
you can reference http://danceswithcode.net/engineeringnotes/quaternions/quaternions.html
BTW, you will get same result when you use a cylinder to make a line between two points from above 3 methods. But indeed, they will have different normal lines. In another words, if you use box between two points, sides of box, except top and bottom, will face different direction from above 3 methods.
let me know pls if you need further explanation.
EDIT: For under or equal to IOS 11
I've good news for you ! You can link two points and put a SCNNode on this Vector !
Take this and enjoy drawing line between two point !
class CylinderLine: SCNNode
{
init( parent: SCNNode,//Needed to add destination point of your line
v1: SCNVector3,//source
v2: SCNVector3,//destination
radius: CGFloat,//somes option for the cylinder
radSegmentCount: Int, //other option
color: UIColor )// color of your node object
{
super.init()
//Calcul the height of our line
let height = v1.distance(v2)
//set position to v1 coordonate
position = v1
//Create the second node to draw direction vector
let nodeV2 = SCNNode()
//define his position
nodeV2.position = v2
//add it to parent
parent.addChildNode(nodeV2)
//Align Z axis
let zAlign = SCNNode()
zAlign.eulerAngles.x = Float(M_PI_2)
//create our cylinder
let cyl = SCNCylinder(radius: radius, height: CGFloat(height))
cyl.radialSegmentCount = radSegmentCount
cyl.firstMaterial?.diffuse.contents = color
//Create node with cylinder
let nodeCyl = SCNNode(geometry: cyl )
nodeCyl.position.y = -height/2
zAlign.addChildNode(nodeCyl)
//Add it to child
addChildNode(zAlign)
//set contrainte direction to our vector
constraints = [SCNLookAtConstraint(target: nodeV2)]
}
override init() {
super.init()
}
required init?(coder aDecoder: NSCoder) {
super.init(coder: aDecoder)
}
}
private extension SCNVector3{
func distance(receiver:SCNVector3) -> Float{
let xd = receiver.x - self.x
let yd = receiver.y - self.y
let zd = receiver.z - self.z
let distance = Float(sqrt(xd * xd + yd * yd + zd * zd))
if (distance < 0){
return (distance * -1)
} else {
return (distance)
}
}
}
#maury-markowitz's answer worked for me, here is the latest (Swift4) version of it.
To anyone working with SCNVector3 in Swift I can only recommend to add the +-*/ operator overloads somewhere in your code (e.g. from here).
extension SCNNode {
static func lineNode(from: SCNVector3, to: SCNVector3, radius: CGFloat = 0.25) -> SCNNode {
let vector = to - from
let height = vector.length()
let cylinder = SCNCylinder(radius: radius, height: CGFloat(height))
cylinder.radialSegmentCount = 4
let node = SCNNode(geometry: cylinder)
node.position = (to + from) / 2
node.eulerAngles = SCNVector3.lineEulerAngles(vector: vector)
return node
}
}
extension SCNVector3 {
static func lineEulerAngles(vector: SCNVector3) -> SCNVector3 {
let height = vector.length()
let lxz = sqrtf(vector.x * vector.x + vector.z * vector.z)
let pitchB = vector.y < 0 ? Float.pi - asinf(lxz/height) : asinf(lxz/height)
let pitch = vector.z == 0 ? pitchB : sign(vector.z) * pitchB
var yaw: Float = 0
if vector.x != 0 || vector.z != 0 {
let inner = vector.x / (height * sinf(pitch))
if inner > 1 || inner < -1 {
yaw = Float.pi / 2
} else {
yaw = asinf(inner)
}
}
return SCNVector3(CGFloat(pitch), CGFloat(yaw), 0)
}
}
For the sake of another method, I achieved this through trigonometry. This made the code very minimal. Here is the end result:
In my case the nodes are always placed on a fixed plane that slices the Y-Axis.
// Create Cylinder Geometry
let line = SCNCylinder(radius: 0.002, height: node1.distance(to: node2))
// Create Material
let material = SCNMaterial()
material.diffuse.contents = UIColor.red
material.lightingModel = .phong
line.materials = [material]
// Create Cylinder(line) Node
let newLine = SCNNode()
newLine.geometry = line
newLine.position = posBetween(first: node1, second: node2)
// This is the change in x,y and z between node1 and node2
let dirVector = SCNVector3Make(node2.x - node1.x, node2.y - node1.y, node2.z - node1.z)
// Get Y rotation in radians
let yAngle = atan(dirVector.x / dirVector.z)
// Rotate cylinder node about X axis so cylinder is laying down
currentLine.eulerAngles.x = .pi / 2
// Rotate cylinder node about Y axis so cylinder is pointing to each node
currentLine.eulerAngles.y = yAngle
This is the function to get the position between two nodes, place it within your class:
func posBetween(first: SCNVector3, second: SCNVector3) -> SCNVector3 {
return SCNVector3Make((first.x + second.x) / 2, (first.y + second.y) / 2, (first.z + second.z) / 2)
}
This is the extension to get the distance between nodes for the cylinder height, place it somewhere outside of your class:
extension SCNVector3 {
func distance(to destination: SCNVector3) -> CGFloat {
let dx = destination.x - x
let dy = destination.y - y
let dz = destination.z - z
return CGFloat(sqrt(dx*dx + dy*dy + dz*dz))
}
}
If you don't have one fixed axis like myself then you could do the extra trig to use this method.
Here's a solution using simd and quaternions for the rotation. I based the extension off of the answer by #Bersaelor.
I used this derivation (https://stackoverflow.com/a/1171995/6693924) to create the quaternion from two vectors. Hope this helps.
extension SCNNode {
static func lineNode(from: simd_float3, to: simd_float3, radius : CGFloat = 0.25) -> SCNNode
{
let vector = to - from
let height = simd_length(vector)
//cylinder
let cylinder = SCNCylinder(radius: radius, height: CGFloat(height))
cylinder.firstMaterial?.diffuse.contents = UIColor.white
//line node
let lineNode = SCNNode(geometry: cylinder)
//adjust line position
let line_axis = simd_float3(0, height/2, 0)
lineNode.simdPosition = from + line_axis
let vector_cross = simd_cross(line_axis, vector)
let qw = simd_length(line_axis) * simd_length(vector) + simd_dot(line_axis, vector)
let q = simd_quatf(ix: vector_cross.x, iy: vector_cross.y, iz: vector_cross.z, r: qw).normalized
lineNode.simdRotate(by: q, aroundTarget: from)
return lineNode
}
}
Sprout's (wow, the autocorrect will not allow me to actually type in his name!) post is indeed a solution, but I have implemented a very different solution in my code.
What I do is calculate the length of the line and the two endpoints, based on the X, Y and Z locations from the two ends:
let w = SCNVector3(x: CGFloat(x2m-x1m), y: CGFloat(y2m-y1m), z: CGFloat(z2m-z1m))
let l = w.length()
The length is simply pythag. Now I make an SCNNode that will hold the SCNCylinder, and position it in the middle of the line:
let node = SCNNode(geometry: cyl)
node.position = SCNVector3(x: CGFloat((x1m+x2m)/2.0), y: CGFloat((y1m+y2m)/2.0), z: CGFloat((z1m+z2m)/2.0))
And now the nasty part, where we calculate the Euler angles and rotate the node:
let lxz = (Double(w.x)**2 + Double(w.z)**2)**0.5
var pitch, pitchB: Double
if w.y < 0 {
pitchB = M_PI - asin(Double(lxz)/Double(l))
} else {
pitchB = asin(Double(lxz)/Double(l))
}
if w.z == 0 {
pitch = pitchB
} else {
pitch = sign(Double(w.z)) * pitchB
}
var yaw: Double
if w.x == 0 && w.z == 0 {
yaw = 0
} else {
let inner = Double(w.x) / (Double(l) * sin (pitch))
if inner > 1 {
yaw = M_PI_2
} else if inner < -1 {
yaw = M_PI_2
} else {
yaw = asin(inner)
}
}
node.eulerAngles = SCNVector3(CGFloat(pitch), CGFloat(yaw), 0)
I suspect there is a much simpler way to do this using one of the other rotation inputs, but this works and working is a feature!
Draw the line between two nodes:
func generateLine( startPoint: SCNVector3, endPoint: SCNVector3) -> SCNGeometry {
let vertices: [SCNVector3] = [startPoint, endPoint]
let data = NSData(bytes: vertices, length: MemoryLayout<SCNVector3>.size * vertices.count) as Data
let vertexSource = SCNGeometrySource(data: data,
semantic: .vertex,
vectorCount: vertices.count,
usesFloatComponents: true,
componentsPerVector: 3,
bytesPerComponent: MemoryLayout<Float>.size,
dataOffset: 0,
dataStride: MemoryLayout<SCNVector3>.stride)
let indices: [Int32] = [ 0, 1]
let indexData = NSData(bytes: indices, length: MemoryLayout<Int32>.size * indices.count) as Data
let element = SCNGeometryElement(data: indexData,
primitiveType: .line,
primitiveCount: indices.count/2,
bytesPerIndex: MemoryLayout<Int32>.size)
return SCNGeometry(sources: [vertexSource], elements: [element])
}
How To Use
let line = generateLine(startPoint: SCNVector3Make(1, 1, 1), endPoint: SCNVector3Make(8, 8, 8))
let lineNode = SCNNode(geometry: line)
lineNode.position = SCNVector3Make(15, 15, 10)
scene.rootNode.addChildNode(lineNode)
The thickness of the line requires implementing the SCNSceneRendererDelegate, in particular:
func renderer(_ renderer: SCNSceneRenderer, willRenderScene scene: SCNScene, atTime time: TimeInterval){
glLineWidth(10)
}
Objective-C version of Winchill's answer:
-(void)lineNodeFrom:(SCNVector3)to to:(SCNVector3)from radius:(float)radius{
SCNVector3 w = SCNVector3Make(to.x - from.x, to.y - from.y, from.z - to.z);
float l = sqrtf(powf(w.x, 2) + powf(w.y, 2) + powf(w.z, 2.0f));
SCNCylinder * cylinder = [SCNCylinder cylinderWithRadius:radius height:l];
SCNMaterial * material = [SCNMaterial material];
material.diffuse.contents = [[UIColor darkGrayColor] colorWithAlphaComponent:0.75f];
cylinder.materials = #[material];
[self setGeometry:cylinder];
//original vector of cylinder above 0,0,0
SCNVector3 ov = SCNVector3Make(0, l/2.0,0);
//target vector, in new coordination
SCNVector3 nv = SCNVector3Make((from.x - to.x)/2.0, (from.y - to.y)/2.0, (from.z-to.z)/2.0);
// axis between two vector
SCNVector3 av = SCNVector3Make((ov.x + nv.x)/2.0, (ov.y+nv.y)/2.0, (ov.z+nv.z)/2.0);
//normalized axis vector
SCNVector3 av_normalized = [self normaliseVector:av];
float q0 = 0.0f; //cos(angel/2), angle is always 180 or M_PI
float q1 = av_normalized.x; // x' * sin(angle/2)
float q2 = av_normalized.y; // y' * sin(angle/2)
float q3 = av_normalized.z; // z' * sin(angle/2)
float r_m11 = q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3;
float r_m12 = 2 * q1 * q2 + 2 * q0 * q3;
float r_m13 = 2 * q1 * q3 - 2 * q0 * q2;
float r_m21 = 2 * q1 * q2 - 2 * q0 * q3;
float r_m22 = q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3;
float r_m23 = 2 * q2 * q3 + 2 * q0 * q1;
float r_m31 = 2 * q1 * q3 + 2 * q0 * q2;
float r_m32 = 2 * q2 * q3 - 2 * q0 * q1;
float r_m33 = q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3;
SCNMatrix4 transform;
transform.m11 = r_m11;
transform.m12 = r_m12;
transform.m13 = r_m13;
transform.m14 = 0.0;
transform.m21 = r_m21;
transform.m22 = r_m22;
transform.m23 = r_m23;
transform.m24 = 0.0;
transform.m31 = r_m31;
transform.m32 = r_m32;
transform.m33 = r_m33;
transform.m34 = 0.0;
transform.m41 = (to.x + from.x) / 2.0;
transform.m42 = (to.y + from.y) / 2.0;
transform.m43 = (to.z + from.z) / 2.0;
transform.m44 = 1.0;
self.transform = transform;
}
-(SCNVector3)normaliseVector:(SCNVector3)iv{
float length = sqrt(iv.x * iv.x + iv.y * iv.y + iv.z * iv.z);
if (length == 0){
return SCNVector3Make(0.0, 0.0, 0.0);
}
return SCNVector3Make(iv.x / length, iv.y / length, iv.z / length);
}
Related
I am writing a real-time video filter application and for one of the algorithms I want to try out, I need to generate a random, gaussian univariate distributed buffer (or texture) based on the input source.
Coming from a Python background, the following few lines are running in about 0.15s (which is not real-time worthy but a lot faster than the Swift code I tried below):
h = 1170
w = 2532
with Timer():
noise = np.random.normal(size=w * h * 3)
plt.imshow(noise.reshape(w,h,3))
plt.show()
My Swift code try:
private func generateNoiseTextureBuffer(width: Int, height: Int) -> [Float] {
let w = Float(width)
let h = Float(height)
var noiseData = [Float](repeating: 0, count: width * height * 4)
for xi in (0 ..< width) {
for yi in (0 ..< height) {
let index = yi * width + xi
let x = Float(xi)
let y = Float(yi)
let random = GKRandomSource()
let gaussianGenerator = GKGaussianDistribution(randomSource: random, mean: 0.0, deviation: 1.0)
let randX = gaussianGenerator.nextUniform()
let randY = gaussianGenerator.nextUniform()
let scale = sqrt(2.0 * min(w, h) * (2.0 / Float.pi))
let rx = floor(max(min(x + scale * randX, w - 1.0), 0.0))
let ry = floor(max(min(y + scale * randY, h - 1.0), 0.0))
noiseData[index * 4 + 0] = rx + 0.5
noiseData[index * 4 + 1] = ry + 0.5
noiseData[index * 4 + 2] = 1
noiseData[index * 4 + 3] = 1
}
}
return noiseData
}
...
let noiseData = self.generateNoiseTextureBuffer(width: context.sourceColorTexture.width, height: context.sourceColorTexture.height)
let noiseDataSize = noiseData.count * MemoryLayout.size(ofValue: noiseData[0])
self.noiseBuffer = device.makeBuffer(bytes: noiseData, length: noiseDataSize)
How can I accomplish this fast and easily in Swift?
Im trying to convert my quats to euler, but out of x/y/z components, only my X has accurate value and y/z is incorrect :- ( can any1 have a look/help ?
func quatToEulerAngles(_ quat: simd_quatf) -> SIMD3<Double>{
var angles = SIMD3<Double>();
let qfloat = quat.vector
let q = SIMD4<Double>(Double(qfloat.x),Double(qfloat.y),Double(qfloat.z), Double(qfloat.w))
// roll (x-axis rotation)
let sinr_cosp : Double = 2.0 * (q.w * q.x + q.y * q.z);
let cosr_cosp : Double = 1.0 - 2.0 * (q.x * q.x + q.y * q.y);
angles.x = atan2(sinr_cosp, cosr_cosp);
// pitch (y-axis rotation)
let sinp : Double = 2 * (q.w * q.y - q.z * q.x);
if (abs(sinp) >= 1){
angles.y = copysign(Double.pi / 2, sinp); // use 90 degrees if out of range
}
else{
angles.y = asin(sinp);
}
// yaw (z-axis rotation)
let siny_cosp : Double = 2 * (q.w * q.z + q.x * q.y);
let cosy_cosp : Double = 1 - 2 * (q.y * q.y + q.z * q.z);
angles.z = atan2(siny_cosp, cosy_cosp);
return angles;
}
Wiki example converted to swifht.
TIA
My solution would be to let the (SceneKit) library do it:
func quatToEulerAngles(_ quat: simd_quatf) -> SIMD3<Float>{
let n = SCNNode()
n.simdOrientation = quat
return n.simdEulerAngles
}
I took a look at and converted it to Swift,
https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
It works for me.
func quatToEulerAngles(_ quat: simd_quatf) -> SIMD3<Float>{
var angles = SIMD3<Float>();
let qfloat = quat.vector
// heading = x, attitude = y, bank = z
let test = qfloat.x*qfloat.y + qfloat.z*qfloat.w;
if (test > 0.499) { // singularity at north pole
angles.x = 2 * atan2(qfloat.x,qfloat.w)
angles.y = (.pi / 2)
angles.z = 0
return angles
}
if (test < -0.499) { // singularity at south pole
angles.x = -2 * atan2(qfloat.x,qfloat.w)
angles.y = -(.pi / 2)
angles.z = 0
return angles
}
let sqx = qfloat.x*qfloat.x;
let sqy = qfloat.y*qfloat.y;
let sqz = qfloat.z*qfloat.z;
angles.x = atan2(2*qfloat.y*qfloat.w-2*qfloat.x*qfloat.z , 1 - 2*sqy - 2*sqz)
angles.y = asin(2*test)
angles.z = atan2(2*qfloat.x*qfloat.w-2*qfloat.y*qfloat.z , 1 - 2*sqx - 2*sqz)
return angles
}
I am quite new to swift and Xcode however, I have been programming in other languages for several years. I am trying to procedurally create a 3D mesh in SceneKit (iOS). My code works as expected however, when running the application the generated object renders a flat black colour, ignoring all lighting. I have also added a cube to the scene to show that the scene lighting is working.
I would imagine that there is either a problem with the shader or that I need to define the normals of the geometry to fix this. I have tried playing around with a few properties of the SCNMaterial, but they don't seem to change anything.
If it is just a case of defining the normals, please could you advise how I would do this in Swift / SceneKit. Or perhaps I have missed something else, any help would be much appreciated.
Screenshot below:
My code below:
public static func CreateMesh (size: CGFloat, resolution: CGFloat) -> SCNNode? {
let axisCount = Int(floor(size / resolution))
let bottomLeft = CGVector(
dx: CGFloat(-(axisCount / 2)) * resolution,
dy: CGFloat(-(axisCount / 2)) * resolution
)
var verts = Array(
repeating: Array(
repeating: (i: Int(0), pos: SCNVector3.init(x: 0, y: 0, z: 0)),
count: axisCount),
count: axisCount
)
var vertsStream = [SCNVector3]()
var i : Int = 0
for x in 0...axisCount-1 {
for y in 0...axisCount-1 {
verts[x][y] = (
i,
SCNVector3(
x: Float(bottomLeft.dx + CGFloat(x) * resolution),
y: Float.random(in: 0..<0.1),
z: Float(bottomLeft.dy + CGFloat(y) * resolution)
)
)
vertsStream.append(verts[x][y].pos)
i += 1
}
}
var tris = [(a: Int, b: Int, c: Int)]()
var trisStream = [UInt16]()
for x in 0...axisCount - 2 {
for y in 0...axisCount - 2 {
// Quad
tris.append((
a: verts[x][y].i,
b: verts[x][y+1].i,
c: verts[x+1][y+1].i
))
tris.append((
a: verts[x+1][y+1].i,
b: verts[x+1][y].i,
c: verts[x][y].i
))
}
}
for t in tris {
trisStream.append(UInt16(t.a))
trisStream.append(UInt16(t.b))
trisStream.append(UInt16(t.c))
}
// Create scene element
let geometrySource = SCNGeometrySource(vertices: vertsStream)
let geometryElement = SCNGeometryElement(indices: trisStream, primitiveType: .triangles)
let geometryFinal = SCNGeometry(sources: [geometrySource], elements: [geometryElement])
let node = SCNNode(geometry: geometryFinal)
////////////////////////
// FIX MATERIAL
////////////////////////
let mat = SCNMaterial()
mat.diffuse.intensity = 1
mat.lightingModel = .blinn
mat.blendMode = .replace
node.geometry?.materials = [mat]
return node
}
After a lot of searching I managed to find a post with a line of code that looks something like this:
let gsNormals = SCNGeometrySource(normals: normalStream)
So from there I managed to work out how to set the surface normals. It seems like there really isn't a lot of online content / learning material when it comes to the more advanced topics like this in Xcode / Swift, which is quite unfortunate.
I have set it up to create a parabolic shape plane, just for testing. But this code will be used to generate a mesh from a height map, which should now be easy to implement. I think it's pretty useful code, so I have included it below incase anyone else ever has the same issue that I did.
public static func CreateMesh (size: CGFloat, resolution: CGFloat) -> SCNNode? {
let axisCount = Int(floor(size / resolution))
let bottomLeft = CGVector(
dx: CGFloat(-(axisCount / 2)) * resolution,
dy: CGFloat(-(axisCount / 2)) * resolution
)
/// Verticies ///
var verts = Array(
repeating: Array(
repeating: (i: Int(0), pos: SCNVector3.init(x: 0, y: 0, z: 0)),
count: axisCount),
count: axisCount
)
var vertsStream = [SCNVector3]()
var i = 0
for x in 0...axisCount - 1 {
for y in 0...axisCount - 1 {
var dx = axisCount / 2 - x
dx = dx * dx
var dy = axisCount / 2 - y
dy = dy * dy
let yVal = Float(Double(dx + dy) * 0.0125)
verts[x][y] = (
i: i,
pos: SCNVector3(
x: Float(bottomLeft.dx + CGFloat(x) * resolution),
//y: Float.random(in: 0..<0.1),
y: yVal,
z: Float(bottomLeft.dy + CGFloat(y) * resolution)
)
)
vertsStream.append(verts[x][y].pos)
i += 1
}
}
///
/// Triangles ///
var tris = [(a: Int, b: Int, c: Int)]()
var trisStream = [UInt32]()
for x in 0...axisCount - 2 {
for y in 0...axisCount - 2 {
// Quad
tris.append((
a: verts[x][y].i,
b: verts[x][y+1].i,
c: verts[x+1][y].i
))
tris.append((
a: verts[x+1][y].i,
b: verts[x][y+1].i,
c: verts[x+1][y+1].i
))
}
}
for t in tris {
trisStream.append(UInt32(t.a))
trisStream.append(UInt32(t.b))
trisStream.append(UInt32(t.c))
}
///
/// Normals ///
var normalStream = [SCNVector3]()
for x in 0...axisCount - 1 {
for y in 0...axisCount - 1 {
// calculate normal vector perp to average plane
let leftX = x == 0 ? 0 : x - 1
let rightX = x == axisCount - 1 ? axisCount - 1 : x + 1
let leftY = y == 0 ? 0 : y - 1
let rightY = y == axisCount - 1 ? axisCount - 1 : y + 1
let avgXVector = float3(verts[rightX][y].pos) - float3(verts[leftX][y].pos)
let avgYVector = float3(verts[x][rightY].pos) - float3(verts[x][leftY].pos)
// If you are unfamiliar with how to calculate normals
// search for vector cross product, this is used to find
// a vector that is orthogonal to two other vectors, in our
// case perpendicular to the surface
let normal = cross(
normalize(avgYVector),
normalize(avgXVector)
)
normalStream.append(SCNVector3(normal))
}
}
///
// Create scene element
let gsGeometry = SCNGeometrySource(vertices: vertsStream)
let gsNormals = SCNGeometrySource(normals: normalStream)
let geometryElement = SCNGeometryElement(indices: trisStream, primitiveType: .triangles)
let geometryFinal = SCNGeometry(sources: [gsGeometry, gsNormals], elements: [geometryElement])
let node = SCNNode(geometry: geometryFinal)
let mat = SCNMaterial()
mat.isDoubleSided = true
mat.lightingModel = .blinn
node.geometry?.materials = [mat]
return node
}
I just created a rectangle using four vertices in metal. I just need to rotate it. So I use a model metrics.Here is my vertex shader.
vertex VertexOutTexture vertex_shader_texture(const VertexInTexture vertices [[stage_in]],
constant ModelConstant &modelConstants[[buffer(1)]],
VertexOutTexture v;
v.position = modelConstants.modelMatrix*float4(vertices.position,1);
v.color = vertices.color;
v.textureCoordinates = vertices.textureCoordinates;
return v;
}
it rotate. But shape is changed. So I used projection transformation which converts the node’s coordinates from camera coordinates to normalized coordinates.
I create projrction matrix:
var sceneConstants = ScenceConstants()
set its value:
sceneConstants.projectionMatrix = matrix_float4x4(prespectiveDegreesFov:45, aspectRatio:Float(1.0),nearZ:0.1,farZ:100)
where init mathod is in math.h
init(prespectiveDegreesFov degreesFov:Float, aspectRatio:Float,nearZ:Float,farZ:Float){
let fov = radians(fromDegrees: degreesFov)
let y = 1/tan(fov*0.5)
let x = y/aspectRatio
let z1 = farZ/(nearZ - farZ)
let w = (z1*nearZ)
columns = (
float4(x, 0, 0, 0),
float4(0, y, 0, 0),
float4(0, 0, z1,-1),
float4(0, 0, w, 0)
)
}
send commands to GPU:
commandEncoder.setVertexBytes(&sceneConstants, length: MemoryLayout<ScenceConstants>.stride, index: 2)
change my vertex shader:
v.position = sceneConstants.projectionMatrix* modelConstants.modelMatrix*float4(vertices.position ,1 );
But it did not work.
before rotation:
after rotation:
I have atached math functions I am using below.
func radians(fromDegrees degrees:Float) ->Float{
return (degrees/100)*Float(Double.pi)
}
extension matrix_float4x4 {
init(prespectiveDegreesFov degreesFov:Float, aspectRatio:Float,nearZ:Float,farZ:Float){
let fov = radians(fromDegrees: degreesFov)
let y = 1/tan(fov*0.5)
let x = y/aspectRatio
let z1 = farZ/(nearZ - farZ)
let w = (z1*nearZ)
columns = (
float4(x, 0, 0, 0),
float4(0, y, 0, 0),
float4(0, 0, z1,-1),
float4(0, 0, w, 0)
)
}
mutating func scale(axis: float3){
var result = matrix_identity_float4x4
let x :Float = axis.x
let y :Float = axis.y
let z :Float = axis.z
result.columns = (
float4(x,0,0,0),
float4(0,y,0,0),
float4(0,0,z,0),
float4(0,0,0,1)
)
print("self:\(self)")
self = matrix_multiply(self, result)
}
mutating func translate(direction: float3){
var result = matrix_identity_float4x4
let x :Float = direction.x
let y :Float = direction.y
let z :Float = direction.z
result.columns = (
float4(1,0,0,0),
float4(0,1,0,0),
float4(0,0,1,0),
float4(x,y,z,1)
)
print("self:\(self)")
self = matrix_multiply(self, result)
}
mutating func rotate(angle: Float ,axis: float3){
var result = matrix_identity_float4x4
let x :Float = axis.x
let y :Float = axis.y
let z :Float = axis.z
let c: Float = cos(angle)
let s:Float = sin(angle)
let mc :Float = (1 - c)
let r1c1: Float = x * x * mc + c
let r2c1: Float = x * y * mc + z * s
let r3c1: Float = x * z * mc - y * s
let r4c1: Float = 0.0
let r1c2: Float = y * x * mc - z * s
let r2c2: Float = y * y * mc + c
let r3c2: Float = y * z * mc + x * s
let r4c2: Float = 0.0
let r1c3: Float = z * x * mc + y * s
let r2c3: Float = z * y * mc - x * s
let r3c3: Float = z * z * mc + c
let r4c3: Float = 0.0
let r1c4: Float = 0.0
let r2c4: Float = 0.0
let r3c4: Float = 0.0
let r4c4: Float = 1.0
result.columns = (
float4(r1c1,r2c1,r3c1,r4c1),
float4(r1c2,r2c2,r3c2,r4c2),
float4(r1c3,r2c3,r3c3,r4c3),
float4(r1c4,r2c4,r3c4,r4c4)
)
print("Result:\(result)")
self = matrix_multiply(self, result)
}
}
How can I fix this issue?Any suggestions please?
How does one create a path of a sine wave between two points?
I am able to create a path of a sine wave from an origin, but am not sure how the direction can be transformed so that the sine wave ends at a target CGPoint.
I would like to animate a SKNode along the path using SKAction.followPath
The simplest way to think about this is to transform the coordinate system, rotating by the angle between the two points, scaling by the distance between them and translating by the first point (assuming the sine starts at 0,0).
The OP has specified that he doesn't just want to draw the curve (in which case all one needs to do is apply the transform to the graphics context), but rather to use the curve in a SpriteKit SKAction.followPath call, so the transform has to be applied to the coordinates in the path, not to the context.
Here's a solution using CGPath rather than UIBezierPath, but they are equivalent, and you can get the UI version simply by let uip = UIBezierPath(cgPath: path). (I prefer CoreGraphics as they are cross-platform).
Playground code...
class MyView: UIView {
override func draw(_ rect: CGRect) {
guard let context = UIGraphicsGetCurrentContext() else { return }
context.setFillColor(UIColor.red.cgColor)
context.fill(self.bounds)
// Calculate the transform
let p1 = CGPoint(x: 100, y: 100)
let p2 = CGPoint(x: 400, y: 400)
let dx = p2.x - p1.x
let dy = p2.y - p1.y
let d = sqrt(dx * dx + dy * dy)
let a = atan2(dy, dx)
let cosa = cos(a) // Calculate only once...
let sina = sin(a) // Ditto
// Initialise our path
let path = CGMutablePath()
path.move(to: p1)
// Plot a parametric function with 100 points
let nPoints = 100
for t in 0 ... nPoints {
// Calculate the un-transformed x,y
let tx = CGFloat(t) / CGFloat(nPoints) // 0 ... 1
let ty = 0.1 * sin(tx * 2 * CGFloat.pi ) // 0 ... 2π, arbitrary amplitude
// Apply the transform
let x = p1.x + d * (tx * cosa - ty * sina)
let y = p1.y + d * (tx * sina + ty * cosa)
// Add the transformed point to the path
path.addLine(to: CGPoint(x: x, y: y))
}
// Draw the path
context.setStrokeColor(UIColor.blue.cgColor)
context.addPath(path)
context.strokePath()
}
}
let v = MyView(frame: CGRect(origin: CGPoint(x: 0, y:0), size: CGSize(width: 500, height: 500)))
Not crystal clear what you want but here's one possibility assuming you want a tilted sin curve:
Assume that the start point is (0, 0) and the end point is (x, y).
Let L be the distance between the origin and your point: L = sqrt(x^2 + y^2)
Write a loop that starts at 0 and ends at L, with increment dL and running sum l (which ends up running between 0 and L). This loop will allow us to create the points on your Bezier.
Then the x coordinate of your sin graph will be:
x_P = l * cos(theta), ranging from 0 to L * cos(theta) = x
To get the y coordinate, we add a sin function with the correct period to the sloping line between the origin and your point:
y_P = l * sin(theta) + sin(2 * PI * l / L)
note that, at l = L, (x_P, y_P) = (x, y) which is as it should be.
Was this what you wanted? It is not a rotation and so will not behave when the angle theta is large.