XOR Neural Network not converging - neural-network

I'm having a problem with getting my XOR neural network to converge. It has two inputs, 2 nodes in the hidden layer, and one output node. I think it has something to do with my back propagation algorithm but I have tried to figure out where in it the problem occurs but I can't. I have also looked extensively over all the algorithms and they appear to be all correct.
import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Random;
public class NeuralNetwork {
public static class Perceptron {
public ArrayList<Perceptron> inputs;
public ArrayList<Double> inputWeight;
public double output;
public double error;
private double bias = 1;
private double biasWeight;
public boolean activationOn = false;
//sets up non input layers
public Perceptron(ArrayList<Perceptron> in) {
inputWeight = new ArrayList<Double>(in.size());
inputs = in;
initWeight(in.size());
}
//basic constructor
public Perceptron() { }
//generate random weights
private void initWeight(int size) {
Random generator = new Random();
for(int i=0; i<size; i++)
inputWeight.add(i, ((generator.nextDouble())));
biasWeight = (generator.nextDouble());
}
//calculate output based on current outputs of last layer
public double calculateOutput() {
double num = 0;
num = bias*biasWeight;
for(int i=0; i<inputs.size(); i++)
num += inputs.get(i).output * inputWeight.get(i);
output = num;
if(activationOn)
output = sigmoid(output);
else
output = threshold(output);
return output;
}
//methods used for learning
//calculate output error
public double calcOutputError(double expected){
error = output * (1 - output) * (expected - output);
return error;
}
//calculate node blame
public void blame(double outError, double outWeight) {
error = output * (1 - output) * outWeight * outError;
}
//adjust weights
public void adjustWeight() {
double alpha = .5;
double newWeight = 0;
for(int i=0; i<inputs.size(); i++) {
newWeight = inputWeight.get(i) + alpha * inputs.get(i).output * error;
inputWeight.set(i, newWeight);
}
//adjust bias weight
newWeight = biasWeight + alpha * bias * error;
biasWeight = newWeight;
//System.out.println("Weight " + biasWeight);
}
//returns the sigmoid of x
private double sigmoid(double x) {
return (1 / ( 1 + Math.pow(Math.E, -x)));
}
//returns threshold of x
private double threshold(double x) {
if(x>=0.5)
return 1;
else
return 0;
}
}
//teaches a neural network XOR
public static void teachXOR(ArrayList<Perceptron> inputs, ArrayList<Perceptron> hidden, Perceptron output) {
int examples[][] = { {0,0,0},
{1,1,0},
{0,1,1},
{1,0,1} };
boolean examplesFix[] = {false, false, false, false};
int layerSize = 2;
boolean learned = false;
boolean fixed;
int limit = 50000;
while(!learned && limit > 0) {
learned = true;
limit--;
//turn on using activation function
for(int i=0; i<2; i++)
hidden.get(i).activationOn = true;
output.activationOn = true;
for(int i=0; i<4; i++) {
examplesFix[i] = false;
//set up inputs
for(int j=0; j<layerSize; j++)
inputs.get(j).output = examples[i][j];
//calculate outputs for hidden layer
for(int j=0; j<layerSize; j++)
hidden.get(j).calculateOutput();
//calculate final output
double outValue = output.calculateOutput();
System.out.println("Check output " + examples[i][0] + "," + examples[i][1] + " = " + outValue);
if(((outValue < .5 && examples[i][2] == 1) || (outValue > .5 && examples[i][2] == 0))) {
learned = false;
examplesFix[i] = true;
}
}
//turn on using activation function
for(int i=0; i<2; i++)
hidden.get(i).activationOn = true;
output.activationOn = true;
//teach the nodes that are incorrect
if(!learned && limit >= 0) {
for(int i=0; i<4; i++) {
if(examplesFix[i]) {
fixed = false;
while(!fixed) {
//System.out.println("Adjusting weight: " + examples[i][0] + "," + examples[i][1] + " --> " + examples[i][2]);
for(int j=0; j<layerSize; j++)
inputs.get(j).output = examples[i][j];
//calculate outputs for hidden layer
for(int j=0; j<layerSize; j++)
hidden.get(j).calculateOutput();
//calculate final output
double outValue = output.calculateOutput();
if((outValue >= .5 && examples[i][2] == 1) || (outValue < .5 && examples[i][2] == 0)) {
fixed = true;
}
else {
double outError = output.calcOutputError(examples[i][2]);
//blame the hidden layer nodes
for(int j=0; j<layerSize; j++)
hidden.get(j).blame(outError, output.inputWeight.get(j));
//adjust weights
for(int j=0; j<layerSize; j++)
hidden.get(j).adjustWeight();
output.adjustWeight();
}
}
}
}
}
}
//if(limit <= 0)
// System.out.println("Did not converge");//, error: " + output.error);
//System.out.println("Done");
}
//runs tests for XOR, not complete
public static void runXOR(ArrayList<Perceptron> inputs, ArrayList<Perceptron> hidden, Perceptron output) throws IOException {
//create new file
PrintWriter writer;
File file = new File("Test.csv");
if(file.exists())
file.delete();
file.createNewFile();
writer = new PrintWriter(file);
ArrayList<String> positive = new ArrayList<String>();
ArrayList<String> negative = new ArrayList<String>();
//turn off using activation function
for(int i=0; i<2; i++)
hidden.get(i).activationOn = false;
output.activationOn = false;
//tests 10,000 points
for(int i=0; i<=100; i++) {
for(int j=0; j<=100; j++) {
inputs.get(0).output = (double)i/100;
inputs.get(1).output = (double)j/100;
//calculate outputs for hidden layer
for(int k=0; k<2; k++)
hidden.get(k).calculateOutput();
//calculate final output
double outValue = output.calculateOutput();
//keep track of positive and negative results
if(outValue >= .5) {
positive.add((double)i/100 + "," + (double)j/100 + "," + outValue);
//writer.println((double)i/100 + "," + (double)j/100 + ",1");
}
else if(outValue < .5) {
negative.add((double)i/100 + "," + (double)j/100 + "," + outValue);
//writer.println((double)i/100 + "," + (double)j/100 + ",0");
}
}
}
//write out to file
writer.println("X,Y,Positive,X,Y,Negative");
int i = 0;
while(i<positive.size() && i<negative.size()) {
writer.println(positive.get(i) + "," + negative.get(i));
i++;
}
while(i<positive.size()) {
writer.println(positive.get(i));
i++;
}
while(i<negative.size()) {
writer.println(",,," + negative.get(i));
i++;
}
writer.close();
}
//used for testing
public static void main(String[] args) throws IOException {
int layerSize = 2;
ArrayList<Perceptron> inputLayer;
ArrayList<Perceptron> hiddenLayer;
Perceptron outputLayer;
//XOR neural network
inputLayer = new ArrayList<Perceptron>(layerSize);
hiddenLayer = new ArrayList<Perceptron>(layerSize);
//for(Perceptron per : inputLayer)
// per = new Perceptron();
for(int i=0; i<layerSize; i++)
inputLayer.add(new Perceptron());
for(int i=0; i<layerSize; i++)
hiddenLayer.add(new Perceptron(inputLayer));
outputLayer = new Perceptron(hiddenLayer);
teachXOR(inputLayer, hiddenLayer, outputLayer);
runXOR(inputLayer, hiddenLayer, outputLayer);
}
}

First, your code has very peculiar structure and will be hard to debug. I would consider writing it from scratch, with more clear structure, less internal fields, and more actual functions returning values.
One major error (possibly not the only one) is your distinction between output and learnOutput in hidden layer. When you calculate activation of the output layer you actually use "output" field, while you should use learnOutput (which is the only one actually using sigmoid activation).
Furthermore - if you correctly restructure your code you could create unit test for numerical gradient testing, and this is what you should always do when working with neural networks/other gradient trained machines. In this case it would show you that your gradient is incorrect.

Related

Unity Destroy() doesn't delete script

Noob mistake I was only referencing the parents brain from the child's instead of copying it directly. It's a neural network that can grow in size (or shrink) through genetics. I was going to post it but it doesn't fit on this without me having to type a larger ratio of words to code oh look it works now
public class Animal1 : MonoBehaviour
{
public class Neuron1
{
public int[] children;
public float[] weights;
public float bias;
public float value;
public Neuron1()
{
children = new int[10];
for (int i = 0; i < 10; i++)
{
children[i] = -1;
}
weights = new float[10];
for (int i = 0; i < 10; i++)
{
weights[i] = 1;
}
bias = 0;
value = 0;
}
}
float sightRange = 2;
Vector2 left = new Vector2(-.4f,.6f);
Vector2 right = new Vector2(.4f, .6f);
RaycastHit2D hitLeft;
RaycastHit2D hitForward;
RaycastHit2D hitRight;
public LayerMask animalLayerMask;
[System.NonSerialized]
public int food = 0;
int foodCounter = 0;
int foodForReproduction = 3;
float noFoodCounter = 0;
int lifeWithoutFood = 20;
int maxBrainSize = 100;
[System.NonSerialized]
public Neuron1[] brain1 = new Neuron1[100]; //first three and last three are inputs and outputs and are never mutated
int childrenMaxAmount = 5;
float biasInitRange = 2;
float weightInitRange = 2;
int outputSize = 2;
int inputSize = 3;
GameObject manager;
[System.NonSerialized]
public bool firstGen = false;
[System.NonSerialized]
public GameObject parent1;
[System.NonSerialized]
public bool directCopy = false;
float maxTravelRange = 5;
Color color;
float colorMutationRate = .1f;
public GameObject animal1Prefab1;
bool debugBool = false;
void Start()
{
manager = GameObject.Find("Manager Object");
if (firstGen == true)
{
InitializeBrain(3, 2, 20);
firstGen = false;
transform.GetComponent<SpriteRenderer>().color = new Color(Random.Range(0f, 1f), Random.Range(0f, 1f), Random.Range(0f, 1f), 1);
}
else
{
if (parent1.GetComponent<Animal1>().brain1[0].bias == 1234)
{
Debug.Log("parent passing brain after deletion");
}
Mutate(parent1, 5, 1f, .5f);
transform.GetComponent<SpriteRenderer>().color = color;
}
}
void Update()
{
if (brain1[0].bias == 1234)
{
GetComponent<SpriteRenderer>().color = Color.black;
}
//teleportation
if (transform.position.x > maxTravelRange)
{
Vector2 newPosition = new Vector2(-maxTravelRange, transform.position.y);
transform.position = newPosition;
}
if (transform.position.x < -maxTravelRange)
{
Vector2 newPosition = new Vector2(maxTravelRange, transform.position.y);
transform.position = newPosition;
}
if (transform.position.y > maxTravelRange)
{
Vector2 newPosition = new Vector2(transform.position.x, -maxTravelRange);
transform.position = newPosition;
}
if (transform.position.y < -maxTravelRange)
{
Vector2 newPosition = new Vector2(transform.position.x, maxTravelRange);
transform.position = newPosition;
}
//input
hitLeft = Physics2D.Raycast(transform.position, transform.TransformDirection(left), sightRange, ~animalLayerMask); //left
hitForward = Physics2D.Raycast(transform.position, transform.TransformDirection(Vector2.up), sightRange, ~animalLayerMask); //forward
hitRight = Physics2D.Raycast(transform.position, transform.TransformDirection(right), sightRange, ~animalLayerMask); //right
if (hitLeft)
{
brain1[0].value = 1;
}
if (hitForward)
{
brain1[1].value = 1;
}
if (hitRight)
{
brain1[2].value = 1;
}
//output
Think();
// one output for speed, another for turning
int rotDir = 1;
if (brain1[maxBrainSize - 1].value < 0)
{
rotDir = -1;
}
Vector3 eulerRotation = new Vector3(0, 0, (45 * rotDir + (transform.rotation.eulerAngles.z % 360)) % 360);
transform.rotation = Quaternion.RotateTowards(transform.rotation, Quaternion.Euler(eulerRotation), Mathf.Abs(brain1[maxBrainSize - 1].value) * 25 * Time.deltaTime);
if (brain1[maxBrainSize - 2].value > 0) // so they can't go backwards
{
transform.Translate(Vector2.up * (brain1[maxBrainSize - 2].value * .1f) * Time.deltaTime);
}
//reset outputs
brain1[maxBrainSize - 2].value = 0;
brain1[maxBrainSize - 1].value = 0;
// reset inputs
brain1[0].value = 0;
brain1[1].value = 0;
brain1[2].value = 0;
noFoodCounter += Time.deltaTime;
if (food > 0)
{
foodCounter++;
food = 0;
noFoodCounter = 0;
}
if (foodCounter > foodForReproduction)
{
foodCounter = 0;
Reproduce();
}
if (noFoodCounter > lifeWithoutFood/2)
{
foodCounter = 0;
}
if (noFoodCounter > lifeWithoutFood)
{
Destroy(gameObject);
}
}
void InitializeBrain(int inputs, int outputs, int sizeExcludingInputsAndOutputs)
{
for (int i = 0; i < sizeExcludingInputsAndOutputs + inputs; i++)
{
brain1[i] = new Neuron1();
}
for (int i = maxBrainSize - outputs; i < maxBrainSize; i++) // outputs
{
brain1[i] = new Neuron1();
}
// all neurons in between the inputs and outputs
for (int i = inputs; i < sizeExcludingInputsAndOutputs + inputs; i++)
{
brain1[i].bias = Random.Range(-biasInitRange, biasInitRange);
for (short j = 0; j < childrenMaxAmount -1; j++) // -1 so there is always at least one free space for a child
{
int rnd1 = Random.Range(inputs, sizeExcludingInputsAndOutputs + inputs);
bool alreadyContains = true;
int errorCounter = 0;
while (alreadyContains) // making sure none are children of themselves, and that it doesn't already have this child
{
alreadyContains = false;
for (short h = 0; h < childrenMaxAmount; h++)
{
if (brain1[i].children[h] == rnd1) // if it already has this child
{
alreadyContains = true;
rnd1 = Random.Range(inputs, sizeExcludingInputsAndOutputs + inputs);
while (rnd1 == i) // and its not itself
{
rnd1 = Random.Range(inputs, sizeExcludingInputsAndOutputs + inputs);
}
break;
}
}
errorCounter++;
if (errorCounter > 100) // so we don't get stuck in small network sizes
{
goto outside2;
}
}
brain1[i].children[j] = rnd1;
brain1[i].weights[j] = Random.Range(-weightInitRange, weightInitRange);
if (Random.Range(1, 10) > 8)
{
break; // so not every neuron has the same amount of children
}
}
outside2:
{
}
}
// assign children of inputs
for (int i = 0; i < inputs; i++)
{
for (int j = 0; j < childrenMaxAmount; j++) // assigning all max children (sometimes) to inputs, their amounts of children will never change
{
int rnd1 = Random.Range(inputs, sizeExcludingInputsAndOutputs + inputs);
bool alreadyContains = true;
int errorCounter = 0;
while (alreadyContains)
{
alreadyContains = false;
for (short h = 0; h < childrenMaxAmount; h++)
{
if (brain1[i].children[h] == rnd1)
{
alreadyContains = true;
rnd1 = Random.Range(inputs, sizeExcludingInputsAndOutputs + inputs);
}
}
errorCounter++;
if (errorCounter > 1000) // so we don't get stuck in small network sizes
{
goto outside1;
}
}
brain1[i].children[j] = rnd1;
//brain1[i].weights[j] = 100; // input weight
}
outside1:
{
}
}
RemoveDeadNeurons();
// assign parents of outputs
int brainEnd = maxBrainSize - outputs;
for (int i = brainEnd; i < maxBrainSize; i++)
{
for (short j = 0; j < childrenMaxAmount; j++) // same amount of parents as inputs have children
{
int rnd1 = Random.Range(inputs, brainEnd);
while (brain1[rnd1] == null)
{
rnd1 = Random.Range(inputs, brainEnd);
}
bool alreadyContains = true;
int errorCounter = 0;
while (alreadyContains) //making sure we dont already have this parent
{
alreadyContains = false;
for (short h = 0; h < childrenMaxAmount; h++)
{
if (brain1[rnd1].children[h] == i)
{
alreadyContains = true;
rnd1 = Random.Range(inputs, brainEnd);
while (brain1[rnd1] == null)
{
rnd1 = Random.Range(inputs, brainEnd);
}
}
}
errorCounter++;
if (errorCounter > 1000) // so we don't get stuck
{
goto outside3;
}
}
for (int h = 0; h < childrenMaxAmount; h++) //adding to next available child space of the parent
{
if (brain1[rnd1].children[h] == -1)
{
brain1[rnd1].children[h] = i;
brain1[rnd1].weights[h] = Random.Range(-weightInitRange, weightInitRange);
break;
}
}
}
outside3:
{
}
}
}
void Think()
{
int[] activatedChildrenIndexes = new int[500];
int[] workingArray = new int[500];
int workingArrayCounter = 0;
short layerCounter = 0;
for (int i = 0; i < 500; i++)
{
activatedChildrenIndexes[i] = -1;
}
//initializing inputs as first activated children layer to be calculated
activatedChildrenIndexes[0] = 0;
activatedChildrenIndexes[1] = 1;
activatedChildrenIndexes[2] = 2;
int thoughtDepth = 6; //keep this as low as possible, will change to make it a percent of the amount of neurons that already exist
for (int x = 0; x < thoughtDepth; x++)
{
for (int i = 0; i < 500; i++) // cycle through activated children and add their activated children to a list
{
int currentNodeIndex = activatedChildrenIndexes[i];
if (currentNodeIndex == -1)
{
layerCounter++;
break;
}
//activation function
if (brain1[currentNodeIndex].value <= 0)
{
brain1[currentNodeIndex].value = 0;
}
else
{
brain1[currentNodeIndex].value = 1;
}
for (int j = 0; j < childrenMaxAmount; j++)
{
if (brain1[currentNodeIndex].children[j] == -1)
{
break;
}
brain1[brain1[currentNodeIndex].children[j]].value
+= (brain1[currentNodeIndex].value * brain1[currentNodeIndex].weights[j]) + brain1[currentNodeIndex].bias;
bool activatedChildIsInNextLayer = false;
for (int h = 0; h < 500; h++)
{
if (brain1[currentNodeIndex].children[j] == activatedChildrenIndexes[h])
{
activatedChildIsInNextLayer = true;
}
}
if (brain1[brain1[currentNodeIndex].children[j]].value > 0
|| layerCounter == 0
|| brain1[currentNodeIndex].children[j] > maxBrainSize - outputSize)
{
if (!activatedChildIsInNextLayer)
{
workingArray[workingArrayCounter] = brain1[currentNodeIndex].children[j];
if (workingArrayCounter < 499)//to prevent out of bounds indexing
{
workingArrayCounter++;
}
}
}
if (brain1[brain1[currentNodeIndex].children[j]].value < 0 && brain1[currentNodeIndex].children[j] < maxBrainSize - outputSize)
{
brain1[brain1[currentNodeIndex].children[j]].value = 0; //resetting negative nodes that didn't get added to next layer
}
}
brain1[currentNodeIndex].value = 0; // resetting value after passing to children
}
for (int i = workingArrayCounter; i < 500; i++)
{
workingArray[i] = -1;
}
workingArrayCounter = 0;
for (int i = 0; i < 500; i++)
{
activatedChildrenIndexes[i] = workingArray[i];
}
}
}
void Mutate(GameObject parent, float mutationRate, float weightsMutate, float biasMutate)
{
color = parent.GetComponent<SpriteRenderer>().color;
for (int i = 0; i < maxBrainSize; i++) // initialized to its parent's brain
{
if (parent.GetComponent<Animal1>().brain1[i] != null)
{
brain1[i] = new Neuron1();
brain1[i].bias = parent.GetComponent<Animal1>().brain1[i].bias;
for (int j = 0; j < childrenMaxAmount; j++)
{
brain1[i].children[j] = parent.GetComponent<Animal1>().brain1[i].children[j];
brain1[i].weights[j] = parent.GetComponent<Animal1>().brain1[i].weights[j];
}
}
}
for (int i = inputSize; i < maxBrainSize - outputSize; i++)
{
if (brain1[i] != null)
{
if (Random.Range(0, 100) < mutationRate) // it will be mutated
{
switch (Random.Range(1, 5))
{
case 1: //change one of its weights
int weightCounter = 0;
for (int k = 0; k < childrenMaxAmount; k++) // counting its weights
{
if (brain1[i].children[k] != -1)
{
weightCounter++;
}
else
{
break;
}
}
brain1[i].weights[Random.Range(0, weightCounter)] += Random.Range(-weightsMutate, weightsMutate);
color.r += Random.Range(-colorMutationRate, colorMutationRate);
color.g += Random.Range(-colorMutationRate, colorMutationRate);
color.b += Random.Range(-colorMutationRate, colorMutationRate);
break;
case 2: //change its bias
brain1[i].bias += Random.Range(-biasMutate, biasMutate);
color.r += Random.Range(-colorMutationRate, colorMutationRate);
color.g += Random.Range(-colorMutationRate, colorMutationRate);
color.b += Random.Range(-colorMutationRate, colorMutationRate);
break;
case 3: //break a connection/ remove neuron
int childrenCounter = 0;
for (int k = 0; k < childrenMaxAmount; k++) // counting its children
{
if (brain1[i].children[k] != -1)
{
childrenCounter++;
}
else
{
break;
}
}
int rndChild = Random.Range(0, childrenCounter);
for (int s = rndChild; s < childrenMaxAmount - 1; s++) // shift children list down starting from rndChild and to the second to last element
{
brain1[i].children[s] = brain1[i].children[s + 1];
brain1[i].weights[s] = brain1[i].weights[s + 1];
}
brain1[i].children[childrenMaxAmount - 1] = -1; // removing the last child after shifting the list down one
brain1[i].weights[childrenMaxAmount - 1] = 0;
RemoveDeadNeurons();
color.r += Random.Range(-colorMutationRate, colorMutationRate);
color.g += Random.Range(-colorMutationRate, colorMutationRate);
color.b += Random.Range(-colorMutationRate, colorMutationRate);
break;
case 4: //add a new child if possible
int childrenCounter2 = 0;
for (int k = 0; k < childrenMaxAmount; k++) // counting its children
{
if (brain1[i].children[k] != -1)
{
childrenCounter2++;
}
else
{
break;
}
}
if (childrenCounter2 < childrenMaxAmount) // if we have room for another child
{
int newChild = Random.Range(inputSize, maxBrainSize);
while (brain1[newChild] == null)
{
newChild = Random.Range(inputSize, maxBrainSize);
}
brain1[i].children[childrenCounter2] = newChild;
brain1[i].weights[childrenCounter2] = Random.Range(-weightInitRange, weightInitRange);
color.r += Random.Range(-colorMutationRate, colorMutationRate);
color.g += Random.Range(-colorMutationRate, colorMutationRate);
color.b += Random.Range(-colorMutationRate, colorMutationRate);
}
break;
}
}
}
}
if (Random.Range(0, 100) < 10) // create a new neuron if space is available for one
{
for (int i = inputSize; i < maxBrainSize - outputSize; i++)
{
if (brain1[i] == null) // the first available neuron
{
brain1[i] = new Neuron1();
int rndParent = Random.Range(0, maxBrainSize - outputSize);
int childrenCounter3 = 0;
if (brain1[rndParent] != null)
{
for (int k = 0; k < childrenMaxAmount; k++) // counting its children
{
if (brain1[rndParent].children[k] != -1)
{
childrenCounter3++;
}
else
{
break;
}
}
}
while (brain1[rndParent] == null || childrenCounter3 == childrenMaxAmount) // making sure it is both an existing neuron and that it has room for another child
{
childrenCounter3 = 0;
rndParent = Random.Range(0, maxBrainSize - outputSize);
if (brain1[rndParent] != null)
{
for (int k = 0; k < childrenMaxAmount; k++) // counting its children
{
if (brain1[rndParent].children[k] != -1)
{
childrenCounter3++;
}
else
{
break;
}
}
}
}
brain1[rndParent].children[childrenCounter3] = i; //giving the neuron a parent
brain1[rndParent].weights[childrenCounter3] = Random.Range(-weightInitRange, weightInitRange);
int rndChild = Random.Range(inputSize, maxBrainSize);
while(brain1[rndChild] == null)
{
rndChild = Random.Range(inputSize, maxBrainSize);
}
brain1[i].children[0] = rndChild; // giving the new neuron a child, a weight, and its bias
brain1[i].weights[0] = Random.Range(-weightInitRange, weightInitRange);
brain1[i].bias = Random.Range(-biasInitRange, biasInitRange);
color.r += Random.Range(-colorMutationRate, colorMutationRate);
color.g += Random.Range(-colorMutationRate, colorMutationRate);
color.b += Random.Range(-colorMutationRate, colorMutationRate);
break;
}
}
}
}
void RemoveDeadNeurons()
{
bool allGood = false;
while (!allGood)
{
for (int i = inputSize; i < maxBrainSize - outputSize; i++) // for every hidden layer neuron
{
if (brain1[i] != null) // if it's a neuron
{
if (brain1[i].children[0] == -1) // if it has no children
{
brain1[i] = null; // deleting neuron
for (int h = 0; h < maxBrainSize - outputSize; h++) //remove from other neurons children list, including from the input layer
{
if (brain1[h] != null)
{
for (int g = 0; g < childrenMaxAmount; g++)
{
if (brain1[h].children[g] == i) // if brain[h] has the removed neuron as a child
{
for (int s = g; s < childrenMaxAmount - 1; s++) // shift children list down
{
brain1[h].children[s] = brain1[h].children[s + 1];
brain1[h].weights[s] = brain1[h].weights[s + 1];
}
brain1[h].children[childrenMaxAmount - 1] = -1; // removing the last child in the list after shifting it down one
brain1[h].weights[childrenMaxAmount - 1] = 0;
}
}
}
}
goto outsideRDNLoop; // break out of for loop and recheck the brain
}
bool parentless = true;
for (int h = 0; h < maxBrainSize - outputSize; h++) // check if it is parentless
{
if (brain1[h] != null)
{
for (int g = 0; g < childrenMaxAmount; g++)
{
if (brain1[h].children[g] == i) // if it is a child of brain[h]
{
parentless = false;
}
}
}
}
if (parentless)
{
brain1[i] = null; //deleting neuron
goto outsideRDNLoop;
}
}
if (i == (maxBrainSize - outputSize) - 1) // if we reached the end of the for loop and this line, we know the brain was allGood
{
allGood = true;
}
}
outsideRDNLoop:
{
}
}
}
void Reproduce()
{
GameObject offspring = Instantiate(animal1Prefab1, new Vector2(transform.position.x + 1, transform.position.y + 1), Quaternion.identity);
offspring.GetComponent<Animal1>().parent1 = gameObject;
offspring.name = "animal1";
}
void OnDrawGizmosSelected()
{
Gizmos.color = Color.red;
Gizmos.DrawRay(transform.position, transform.TransformDirection(left) * sightRange);
Gizmos.DrawRay(transform.position, transform.TransformDirection(Vector2.up) * sightRange);
Gizmos.DrawRay(transform.position, transform.TransformDirection(right) * sightRange);
}
}
I've not run your code, just looked at it, but this looks suspicious if you are having problems with the contents of brain1 being overwritten elsewhere:
void Mutate(GameObject parent, float mutationRate, float weightsMutate, float biasMutate)
{
color = parent.GetComponent<SpriteRenderer>().color;
// This line here is suspicious:
brain1 = parent.GetComponent<Animal1>().brain1; // initialized to its parent's brain
What you are doing here is replacing the reference to the child's brain with the parent's - so if you are starting with just one parent initially, every single entity will be sharing the same brain.
I think perhaps you meant to deep copy the contents from parent's brain into the child's brain? What your assignment here is doing is just taking the reference to the parent's brain and using it as the child brain as well.
Example Deep copy:
Updated Neuron1 class:
public class Neuron1
{
public int[] children;
public float[] weights;
public float bias;
public float value;
public Neuron1()
{
children = new int[10];
for (int i = 0; i < 10; i++)
{
children[i] = -1; // to stop looping when reaching -1
}
weights = new float[10];
for (int i = 0; i < 10; i++)
{
weights[i] = 1;
}
bias = 0;
value = 0;
}
// Added clone function:
public Neuron1 Clone()
{
Neuron1 clone = new Neuron1();
for (int i = 0; i < clone.children.Length; i++)
{
clone.children[i] = this.children[i];
}
for (int i = 0; i < clone.weights.Length; i++)
{
clone.weights[i] = this.weights[i];
}
clone.bias = this.bias;
clone.value = this.value;
return clone;
}
}
Updated start of Mutate function.
void Mutate(GameObject parent, float mutationRate, float weightsMutate, float biasMutate)
{
color = parent.GetComponent<SpriteRenderer>().color;
Neuron1[] parentBrain = parent.GetComponent<Animal1>().brain1; // initialized to its parent's brain
for (int i = 0; i < brain1.Length; ++i)
{
brain1[i] = parentBrain[i].Clone();
}
Well, I have a demo scene here. In it I created an empty game object. It has a script attached to it (CSharp.cs), like this:
In my Update method I wrote
And as soon as I start the game, the game object including the script is deleted.
But if I replace transform.gameObject wit just this then only the script disappears and the game object remains.
DestoryImmediate() is not recommended to be used, instead use Destory()
Destroy() will set the object to null at the end of the frame and whereas DestroyImmediate() function immediately set object reference to null.
DestoryImmediate can also delete prefabs/scenes/art in your project outside of playmode which is another reason you should not use it.

mergsort printing a strange result

I am having an issue with my merge sort, when I print out my sortedArray it only returns [ 0.0, 0.0.....] Im not sure if there is an error in my sort code or in my print line or if it has to do with doubles. The code I am us posted below.
By calling System.out.println(toString(sortedArray) I get an even more obscure answer.
Thanks for any help.
package mergesort;
import java.util.Arrays;
import java.util.Random;
public class mergesort {
public static void main(String[] args) {
double[] array = getIntArray();
long before = System.nanoTime();
double[] sortedArray= mergeSort(array);
System.out.println("Sorting took "+ (System.nanoTime() - before) +" nanoseconds ");
System.out.println(toString(array) + "\n\n" + toString(sortedArray) + "\n main method completed in: " + (System.nanoTime() - before) + " nanoseconds.");
}
private static String toString(double[] array) {
StringBuilder sb = new StringBuilder("[ ");
double len = array.length;
for(int i = 0; i < len - 1; i++) {
sb.append(array[i] + ", ");
}
sb.append(array[(int) (len - 1)] + " ]");
return sb.toString();
}
public static double[] mergeSort(double[] array) {
if (array.length <= 1) {
return array;
}
int half = array.length / 2;
return merge(mergeSort(Arrays.copyOfRange(array, 0, half)),
mergeSort(Arrays.copyOfRange(array, half, array.length)));
}
private static double[] merge(double[] ds, double[] ds2) {
int len1 = ds.length, len2 = ds2.length;
int totalLength = len1 + len2;
double[] result = new double[totalLength];
int counterForLeft =0,counterForRight=0,resultIndex=0;
while(counterForLeft<len1 || counterForRight < len2){
if(counterForLeft<len1 && counterForRight < len2){
if(ds[counterForLeft]<= ds2[counterForRight]){
result[resultIndex++] =(int) ds[counterForLeft++];
} else {
result[resultIndex++] =(int) ds2[counterForRight++];
}
}else if(counterForLeft<len1){
result[resultIndex++] = (int) ds[counterForLeft++];
}else if (counterForRight <len2){
result[resultIndex++] =(int) ds2[counterForRight++];
}
}
return result;
}
private static double[] getIntArray() {
double[] array = new double[10000];
Random random = new Random();
for(int i = 0; i < 10000; i++) {
array[i] = (random.nextDouble() * .99999);
}
return array;
}
}
In the merge method, when copying from one of the input arrays to the results, you cast to int. For example:
result[resultIndex++] =(int) ds[counterForLeft++];
All your doubles are in the range [0...1), so the result of casting any of them to int is zero. Just get rid of those casts, and you will keep your numbers in the merge result.
As an additional tip, it is much easier to debug small problems than large ones. It failed for any size greater than 2, so you should have been debugging with size 2, not 10000.

Attempts to call a method in the same class not working (java)

I'm creating a random number generator which then sorts the digits from largest to smallest. Initially it worked but then I changed a few things. As far as I'm aware I undid all the changes (ctrl + z) but now I have errors at the points where i try to call the methods. This is probably a very amateur problem but I haven't found an answer. The error i'm met with is "method in class cannot be applied to given types"
Here's my code:
public class RandomMath {
public static void main(String[] args) {
String bigger = bigger(); /*ERROR HERE*/
System.out.println(bigger);
}
//create method for generating random numbers
public static int generator(int n){
Random randomGen = new Random();
//set max int to 10000 as generator works between 0 and n-1
for(int i=0; i<1; i++){
n = randomGen.nextInt(10000);
// exclude 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 0000
if((n==1111 || n==2222 || n==3333 || n ==4444 || n==5555)
||(n==6666 || n==7777 || n==8888 || n==9999 || n==0000)){
i--;
}
}
return n;
}
//create method for denoting the bigger number
public static String bigger(int generated){
generated = generator(); /*ERROR HERE*/
System.out.println(generated);
int[] times = new int[10];
while (generated != 0) {
int val = generated % 10;
times[val]++;
generated /= 10;
}
String bigger = "";
for (int i = 9; i >= 0; i--) {
for (int j = 0; j < times[i]; j++) {
bigger += i;
}
}
return bigger;
}
}
You have not defined a method bigger(), only bigger(int generated). Therefore, you must call your bigger method with an integer parameter.

issue in my if statement to make comparison in my java program

any help please, so i already wrote the prog but my if statement in my for loop is not working. the prog need to generate 6 random nos,then apply bubble sort which i already did.then the user must enter 6 numbers and these numbers must be compared against the random numbers and must say whether numbers are found in the random numbers or not. here's the code. something is wrong with the if statement ` public static void main(String[] args) {
try {
int numbers[] = new int[6]; //random numbers will be stored in new array
//2 loop will be created to avoid duplication of numbers
System.out.println("Array before Bubble sort");
for (int i = 0; i < 6; i++) {
numbers[i] = (int) (Math.random() * 40);
if (i > 0) {
for (int b = 0; b < i; b++) { //
if (numbers[b] == numbers[i]) {
i--; //decrement to continue the for loop if the integer has been repeated
}
}
}
System.out.print(numbers[i] + ","); //random numbers will be printed before using sorting bubble sort
}
//sort an array using bubble sort
bubbleSort(numbers);
System.out.println(" \nArray after bubble sort");
for (int i = 0; i < 6; i++) {
System.out.print(numbers[i] + ",");
}
BufferedReader input = new BufferedReader(new InputStreamReader(System.in));
System.out.println("\ninput 6 number between 1 and 40");
int inputNumber = Integer.parseInt(input.readLine());
for (int b = 0; b < 6; b++) {
System.out.println("number:");
int outcome=Integer.parseInt(input.readLine());
if(outcome==numbers){
System.out.println("found in random numbers");
}else{
System.out.println("not found in random numbers");
}
}
} catch (Exception e) {
System.out.println("error");
}
}
public static void bubbleSort(int[] numbers) {
int n = numbers.length;
int temp = 0;
for (int i = 0; i < n; i++) {
for (int j = 1; j < (n - i); j++) {
if (numbers[j - 1] > numbers[j]) { //swap the element
temp = numbers[j - 1];
numbers[j - 1] = numbers[j];
numbers[j] = temp;
}
}
}
}
}`
System.out.println("\ninput 6 number between 1 and 40");
//Scanner is specifically designed for getting an input purpose and introduced in Java 5,so better use it
Scanner s = new Scanner(System.in);
//you need to have nested loop here
//But the best way to search is use binary search,as you have already sorted the array
while (s.hasNextInt()) {
//one at a time from the input is put to outcome
int outcome = s.nextInt();
boolean found = false;
for (int b = 0; b < 6; b++) {
found = false;
if (outcome == numbers[b]) {
found = true;
//remember to break the inner loop if a match is found
break;
} else {
found = false;
}
}
if (found == true) {
System.out.println("found in random numbers");
} else {
System.out.println("not found in random numbers");
}

Creating a Linked list with Structs - C++

I was writing a program which could read an input file and store the read data in nodes linked by a "link list". However, I was getting a few errors:
In constructor List::List(), no match for 'operator =' in *((List*)this)->List::list[0] = 0
In constructor Polynomial::Polynomial(): no match for 'operator =' in *((Polynomial*)this)->Polynomial::poly = (operator new(400u), (<statement>), ...)
I have a feeling where I do: I try to access a certain node through an array is where I go wrong, however, I can't figure it out much.
Here is the code:
#include <iostream>
#include <fstream>
using namespace std;
enum result{success, failure};
struct Node
{
double coefficient;
int power;
Node();
Node(double coef, int pwr);
};
struct List
{
Node *list[100];
//Default constructor
List();
};
Node::Node()
{
coefficient = 0;
power = 0;
}
List::List()
{
*list[0] = NULL;
}
Node::Node(double coef, int pwr)
{
coefficient = coef;
power = pwr;
}
class Polynomial
{
public:
Polynomial();
result multiply(Polynomial &p, Polynomial &q);
result add(Polynomial p, Polynomial &q);
void initialize(ifstream &file);
void simplify(Polynomial &var);
void print_poly();
~Polynomial();
private:
List *poly; //Store the pointer links in an array
Node first_node;
int val;
};
Polynomial::Polynomial()
{
*poly = new List();
}
Polynomial::void initialize(ifstream &file)
{
int y[20];
double x[20];
int i = 0, j = 0;
//Read from the file
file >> x[j];
file >> y[j];
first_node(x[j], y[j++]); //Create the first node with coef, and pwr
*poly->list[i] = &first_node; //Link to the fist node
//Creat a linked list
while(y[j] != 0)
{
file >> x[j];
file >> y[j];
*poly->list[++i] = new Node(x[j], y[j++]);
}
val = i+1; //Keeps track of the number of nodes
}
Polynomail::result multiply(Polynomial &p, Polynomial &q)
{
int i, j, k = 0;
for(i = 0; i < p.val; i++)
{
for(j = 0; j < q.val; j++)
{
*poly->list[k] = new Node(0, 0);
*poly->list[k].coefficient = (p.poly->list[i].coefficient)*(q.poly->list[j].coefficient);
*poly->list[k++].power = (p.poly->list[i].power)+(q.poly->list[j].power);
}
}
val = k+1; //Store the nunber of nodes
return success;
}
Polynomial::void simplify(Polynomial &var)
{
int i, j, k = 0;
//Create a copy of the polynomial
for(j = 0; j < var.val; j++)
{
*poly->list[j] = new Node(0, 0);
*poly->list[j].coefficient = var.poly->list[j].coefficient;
*poly->list[j].power = var.poly->list[j].power;
}
//Iterate through the nodes to find entries which have the same power and add them, otherwise do nothing
for(k = 0; k < var.val; k++)
{
for(i = k; i < var.val;)
{
if(*poly->list[k].power == var.poly->list[++i].power)
{
if(*poly->list.power[0] == 0)
{
NULL;
}
else
{
*poly->list[k].coefficient = *poly->list[k].coefficient + var.poly->list[i].ceofficient;
var.poly->list[i] = Node(0, 0);
}
}
}
}
}
Polynomial::void print_pol()
{
int i = 0;
for(i = 0; i < temp.val; i++)
{
cout << "Coefficient: " << temp.poly->list[i].coefficient << ", and " << "Power: " << temp.poly->list[i].power << endl;
}
}
The problem is a wrong dereference. Line 34 should probably be
list[0] = NULL; // remove the *
You try to assign the value NULL to a variable of the type Node, but you probably mean a pointer to Node.
The very same is true in line 63.
In addition, line 66 sould probably b:
void Polynomial::initialize(ifstream &file) // start with return type