Graphically represent density of iterations - matlab

Kind all,
I am working in MATLAB and I'm using Monte Carlo techniques to fit a model. Basically, if we assume that my model is a simple function such as
y=m*x^2+c
And that both my parameters m and c vary between 0.5 and 10, I may randomly draw from such a parameter space and obtain each time a new y. If I plot all my realizations of y I obtain something similar to the following figure:
Is there a way to represent the DENSITY of the realizations? I mean, is there a way (instead of plotting all the realizations) to obtain some kind of contour plot that lies between the minimum of my iterations and the maximum for which its color represents the amount of realizations that fall within a certain interval?
Thanks all!

This isn't very pretty, but you could vary the parameters and play with the scatter/plotting, to make it a bit more visually appealing.
Also I assumed a gaussian distribution instead of your random one (totally random coloring will give you a uniform density). Also this code could be optimized for speed.
n = 1000;
l = 100;
x = linspace(1, 10, l);
y = repmat(x.^2, n, 1);
c = repmat(normrnd(1, 1, n, 1), 1, l);
m = repmat(normrnd(1, 1, n, 1), 1, l);
y = y.*m + c;
p = plot(y', '.');
figure; hold on;
for i = 1:l
[N,edges,bin] = histcounts(y(:, i));
density = N./sum(N);
c = zeros(n, 3);
for j = 1:n
c(j, :) = [1-density(bin(j))/max(density), 1-density(bin(j))/max(density), 1-density(bin(j))/max(density)];
end
scatter(ones(n, 1)*x(i),y(:, i),[],c,'filled');
end
Gives
This creates a histogram of y values for every position in x, then calculates the probability density for each y-value and colors in the points. Here, the y-values for every position x are normalized individually, to color the points according to the overall density of the plot you need to renormalize.

You can calculate y for discrete points of x, while setting random values for c and m. Then using hist function you can find a "not-normalized density" of function values for a given x. You can then normalize it to get a real density of the values, so that the overall area under the distribution curve sums up to 1.
In order to visualize it, you construct a mesh grid [X, Y] along the values of x and y and put the density values as Z. Now you can either plot the surf or its contour plot.
Here is the code:
clear;
n = 1000000; %number of simulation steps
%parameter ranges
m_min = 0.5; m_max = 10;
c_min = 0.5; c_max = 10;
%x points
x_min = 1; x_max = 4; x_count = 100;
x = linspace(x_min, x_max, x_count);
x2 = x.^2;
y_min = 0; y_max = m_max*x_max*x_max + c_max; y_step = 1;
m = rand(n, 1)*(m_max - m_min) + m_min;
c = rand(n, 1)*(c_max - c_min) + c_min;
c = repmat(c, 1, x_count);
y = m*x2 + c;
x_step = (x_max- x_min)/(x_count-1);
[X, Y] = meshgrid(x_min:x_step:x_max, y_min-y_step:y_step:y_max+y_step);
Z = zeros(size(X));
bins = y_min:y_step:y_max;
for i=1:x_count
[n_hist,y_hist] = hist(y(:, i), bins);
%add zeros on both sides to close the profile
n_hist = [0 n_hist 0];
y_hist = [y_min-y_step y_hist y_max+y_step];
%normalization
S = trapz(y_hist,n_hist); %area under the bow
n_hist = n_hist/S; %scaling of the bow
Z(:, i) = n_hist';
end
surf(X, Y, Z, 'EdgeColor','none');
colormap jet;
xlim([x_min x_max]);
ylim([y_min y_max]);
xlabel('X');
ylabel('Y');
figure
contour(X,Y,Z, 20);
colormap jet;
colorbar;
grid on;
title('Density as function of X');
xlabel('X');
ylabel('Y');
Another interesting view is a plot of each section depending on the x value:
Here is the code for this plot:
clear;
n = 1000000; %number of simulation steps
%parameter ranges
m_min = 0.5; m_max = 10;
c_min = 0.5; c_max = 10;
%x points
x_min = 1; x_max = 4; x_count = 12;
x = linspace(x_min, x_max, x_count);
x2 = x.^2;
m = rand(n, 1)*(m_max - m_min) + m_min;
c = rand(n, 1)*(c_max - c_min) + c_min;
c = repmat(c, 1, x_count);
y = m*x2 + c;
%colors for the plot
colors = ...
[ 0 0 1; 0 1 0; 1 0 0; 0 1 1; 1 0 1; 0 0.75 0.75; 0 0.5 0; 0.75 0.75 0; ...
1 0.50 0.25; 0.75 0 0.75; 0.7 0.7 0.7; 0.8 0.7 0.6; 0.6 0.5 0.4; 1 1 0; 0 0 0 ];
%container for legend entries
legend_list = cell(1, x_count);
for i=1:x_count
bin_number = 30; %number of histogramm bins
[n_hist,y_hist] = hist(y(:, i), bin_number);
n_hist(1) = 0; n_hist(end) = 0; %set first and last values to zero
%normalization
S = trapz(y_hist,n_hist); %area under the bow
n_hist = n_hist/S; %scaling of the bow
plot(y_hist,n_hist, 'Color', colors(i, :), 'LineWidth', 2);
hold on;
legend_list{i} = sprintf('Plot of x = %2.2f', x(i));
end
xlabel('y');
ylabel('pdf(y)');
legend(legend_list);
title('Density depending on x');
grid on;
hold off;

Related

Plot two-dimensional array as elliptical orbit

I am attempting to plot an elliptical orbit based on a 2-D position array, beginning at p= [5 0]. The plot charts positions from a timeframe t, here between 0 and 100. The calculation uses the formula F = -(p/||p||)(m*M/(p^2) to approximate acceleration and velocity. The result should look like the following:
This is my current code. It plots a completely different shape. Is the problem in my way of interpreting the force equation?
Any other help and comments are much appreciated.
t = 0; p = [50 0]; v = [0 8]; %Initial conditions
dt = 0.05;
M = 10000; m= 1;
tmax = 100;
figure, hold on
d = 0.001
clf;
while t < tmax
F = -(p./norm(p)).*(m*M./(p*p'));
a = F./m - d*v;
v = v + a*dt;
p = p + v*dt;
t = t + dt;
plot(p(1),t,'o','MarkerSize',0.5);
hold on;
plot(p(2),t,'o','MarkerSize',0.5);
end
You want p(1) in the x axis and p(2) in the y axis, with t as a parameter. So you need to replace the two plot lines by plot(p(1),p(2),'o','MarkerSize',0.5); (keeping hold on):
t = 0; p = [50 0]; v = [0 8]; %Initial conditions
dt = 0.05;
M = 10000; m= 1;
tmax = 100;
figure, hold on
d = 0.001
clf;
while t < tmax
F = -(p./norm(p)).*(m*M./(p*p'));
a = F./m - d*v;
v = v + a*dt;
p = p + v*dt;
t = t + dt;
hold on
plot(p(1),p(2),'o','MarkerSize',0.5); %%% modified line
end

Model Predictive Control (MPC) for electromechanical system

So I want to create an MPC controller for my seesaw-cart system. All the "grunt work" (getting equations of motion, state-space representation etc.) has been done, so I went into coding into MATLAB.
Here's the following:
clc; clear all; close all;
yalmip('clear')
%% Parameters
a = 0.116553; % height of center mass of the pendulum, [m]
b = 0; % position of the weight B on the vertical rod (not taken into consideration)
c = 0.180047; % height of the center of mass of the cart, [m]
mA = 4.839; % mass of the pendulum, [kg]
mB = 0; % not taken into consideration
mC = 1; % mass of the cart, [kg]
g = 9.81; % gravity factor, [m/s^2]
kappa = 0.1; % coefficient of the viscous damping in the rotational joint
J = 0.68; % moment of inertia of the pendulum, [kgm^2]
Ke = 0.077; % motor constant of the EM force, [Vs^-1]
Kt = 0.077; % proportional moment motor constant, [NmA^-1]
Ra = 2.6; % electrical resistance, [ohm]
p = 1/3.71; % motor gearbox ratio
r = 7.7*10^(-3); % effective radius of the motor shaft, [m]
%% Defining the continuous system
A = [0 1 0 0;
(a*mA*g+b*mB*g)/(J+mB*b^2), -kappa/(J+mB*b^2), -mC*g/(J+mB*b^2), -Ke*Kt/(mC*(J+mB*b^2)*Ra*p^2*r^2);
0 0 0 1;
(a*mA*g+b*mB*g)/(J+mB*b^2)-g, -kappa*c/(J+mB*b^2), -c*mC*g/(J+mB*b^2), -(J+mB*b^2+mC*c^2)*Ke*Kt/(mC*(J+mB*b^2)*Ra*p^2*r^2)];
B = [0;
Kt/(mC*(J+mB*b^2)*Ra*p^2*r^2);
0;
(J+mB*b^2+mC*c^2)*Kt/(mC*(J+mB*b^2)*Ra*p^2*r^2)];
C = eye(4); % check
D = 0;
sysC = ss(A, B, C, D);
%% Defining the discrete system
Ts = 10e-3; % sample time
sysD = c2d(sysC,Ts); % discrete time
Ad = sysD.A;
Bd = sysD.B;
%% Formulation of the MPC problem
[nx, nu] = size(B);
Q = eye(nx);
R = eye(nu);
N = 1000;
% Input constraints, maximum and minimum voltage
umin = -6;
umax = 6;
% Still have to find this
xmin = [-deg2rad(10); -deg2rad(50); -0.5; -10];
xmax = [deg2rad(10); deg2rad(50); 0.5; 10];
uVar = sdpvar(repmat(nu,1,N),ones(1,N));
xVar = sdpvar(repmat(nx,1,N+1),ones(1,N+1));
constraints = [];
objective = 0;
ops = sdpsettings('verbose',0,'solver','quadprog');
for k = 1:N
objective = objective + xVar{k}'*Q*xVar{k} + uVar{k}*R*uVar{k};
constraints = [constraints, xVar{k+1} == Ad*xVar{k} + Bd*uVar{k}];
constraints = [constraints , umin <= uVar{k} <= umax , xmin <= xVar{k+1} <= xmax];
end
controller = optimizer(constraints, objective,ops,xVar{1},[uVar{:}]);
%% Simulation of the linearized model
nSim = 1000;
x0 = [0; 0; 0; 0.05]; % initial values, check
time = 0:Ts:nSim*Ts;
x = zeros(nx,nSim+1);
u = zeros(nu,nSim);
x(:,1) = x0;
for i = 2:nSim+1
disp(strcat(['Sim iter: ', num2str(i-1)]));
uOpt = controller{x(:,i-1)};
u(:,i-1) = uOpt(:,1);
x(:,i) = Ad*x(:,i-1) + Bd*u(:,i-1);
end
%% Plot
figure;
subplot(4,1,1);
plot(time,x(1,:), 'LineWidth', 2, 'Color', 'red'); grid; ylabel('{\theta} (rad)'); title('States');
subplot(4,1,2);
plot(time,x(2,:), 'LineWidth', 2, 'Color', [0.6350, 0.0780, 0.1840]); grid; ylabel('$\dot{\theta}$ (rad/s)', 'Interpreter', 'latex');
subplot(4,1,3);
plot(time,x(3,:), 'LineWidth', 2, 'Color', [0.4940, 0.1840, 0.5560]); grid; ylabel('s (m)');
subplot(4,1,4);
plot(time,x(4,:), 'LineWidth', 2, 'Color',[0, 0.7, 0.9]); grid; ylabel('$\dot{s}$ (m/s)', 'Interpreter', 'latex'); xlabel('t (s)');
figure;
stairs(time(1:end-1),u, 'LineWidth', 2, 'Color',[1, 0.647, 0]); grid; ylabel('Ua (V)'); xlabel('t (s)'); title('Input');
So I was wondering for any suggestions on improvements. What can I do to make my regulator more robust?
Here are my outputs for this particular code:
Note: I'm using YALMIP for the optimization part of the MPC.
You lose feasibility after a few iterations,
sol =
struct with fields:
yalmipversion: '20210331'
matlabversion: '9.9.0.1524771 (R2020b) Update 2'
yalmiptime: 0.1159
solvertime: 0.2331
info: 'Infeasible problem (QUADPROG))'
problem: 1
K>> i
i =
4
Your MPC controller is thus badly tuned (too short horizon being the obvious start)
Also, your definition of u is weird as it has length 4 instead of length N (thus meaning you have two trailing variables in u which never are used, leading to them having value Nan when you look at them)
There are numerous MPC-examples in the tutorials which you should be able to use directly
https://yalmip.github.io/example/standardmpc/
YALMIP-specific question are better asked at
https://github.com/yalmip/YALMIP/discussions
https://groups.google.com/g/yalmip

how to draw random points inside an ellipse matlab

I want to fill this ellipse with N random points inside it
any help I'd be glad
clear ,close all;
xCenter = 15;
yCenter = 10;
xRadius = 3.5;
yRadius = 8;
theta = 0 : 0.01 : 2*pi;
N = 100; % N rand points
x = xRadius * cos(theta) + xCenter;
y = yRadius * sin(theta) + yCenter;
plot(x, y, 'LineWidth', 1);
axis square;
grid on;
I tried this code to generate 100 points inside the ellipse with specific parameters but I did not achieve my goal,
xCenter = 5;
yCenter = 3;
xRadius = 3.5;
yRadius = 8;
theta = 0 : 0.01 : 2*pi;
N = 100;
x = xRadius * cos(theta) + xCenter;
y = yRadius * sin(theta) + yCenter;
xq=(rand(N,1)*(2*yRadius) - yRadius);
yq=(rand(N,1)*(2*yRadius) - yRadius);
in = inpolygon(xq,yq,x,y);
hold on
inX = xq(in);
inY = yq(in);
outX = xq(~in);
outY = yq(~in);
plot(inX, inY , 'ro');
plot(outX, outY, 'b*');
plot(x, y, 'LineWidth', 1);
axis square;
grid on;
Sardar's answer produces points not evenly distributed within the ellipse. This code produces an even distribution of points:
xCenter = 15;
yCenter = 10;
xRadius = 3.5;
yRadius = 8;
N = 100;
% Generate points in the ellipse
t = 2*pi * rand(N,1);
d = sqrt(rand(N,1));
x = xCenter + xRadius * d .* cos(t);
y = yCenter + yRadius * d .* sin(t);
plot(x,y,'o')
The difference is the sqrt on the normalized (0 to 1) distance from the origin d. By computing this square root, you increase the density of points closer to the edge of the ellipse. This compensates for points otherwise being too dense close to the center. The uniform distribution of points along that normalized distance is what causes higher density of points near the center.
Generate random numbers for x and y axes between the specified limits, i.e. xRadius and yRadius, for the respective axes. Read Random Numbers Within a Specific Range to understand how to generate those random numbers.
hold on;
RndAngles = rand(N,1); %Same angle should be used
Xpoints = (xRadius.*rand(N,1) .*cos(2*pi*RndAngles))+ xCenter;
Ypoints = (yRadius.*rand(N,1) .*sin(2*pi*RndAngles))+ yCenter;
plot(Xpoints,Ypoints,'o'); %Plot those points
Output:

Create random unit vector inside a defined conical region

I'm looking for a simple way for creating a random unit vector constrained by a conical region. The origin is always the [0,0,0].
My solution up to now:
function v = GetRandomVectorInsideCone(coneDir,coneAngleDegree)
coneDir = normc(coneDir);
ang = coneAngleDegree + 1;
while ang > coneAngleDegree
v = [randn(1); randn(1); randn(1)];
v = v + coneDir;
v = normc(v);
ang = atan2(norm(cross(v,coneDir)), dot(v,coneDir))*180/pi;
end
My code loops until the random generated unit vector is inside the defined cone. Is there a better way to do that?
Resultant image from test code bellow
Resultant frequency distribution using Ahmed Fasih code (in comments).
I wonder how to get a rectangular or normal distribution.
c = [1;1;1]; angs = arrayfun(#(i) subspace(c, GetRandomVectorInsideCone(c, 30)), 1:1e5) * 180/pi; figure(); hist(angs, 50);
Testing code:
clearvars; clc; close all;
coneDir = [randn(1); randn(1); randn(1)];
coneDir = [0 0 1]';
coneDir = normc(coneDir);
coneAngle = 45;
N = 1000;
vAngles = zeros(N,1);
vs = zeros(3,N);
for i=1:N
vs(:,i) = GetRandomVectorInsideCone(coneDir,coneAngle);
vAngles(i) = subspace(vs(:,i),coneDir)*180/pi;
end
maxAngle = max(vAngles);
minAngle = min(vAngles);
meanAngle = mean(vAngles);
AngleStd = std(vAngles);
fprintf('v angle\n');
fprintf('Direction: [%.3f %.3f %.3f]^T. Angle: %.2fº\n',coneDir,coneAngle);
fprintf('Min: %.2fº. Max: %.2fº\n',minAngle,maxAngle);
fprintf('Mean: %.2fº\n',meanAngle);
fprintf('Standard Dev: %.2fº\n',AngleStd);
%% Plot
figure;
grid on;
rotate3d on;
axis equal;
axis vis3d;
axis tight;
hold on;
xlabel('X'); ylabel('Y'); zlabel('Z');
% Plot all vectors
p1 = [0 0 0]';
for i=1:N
p2 = vs(:,i);
plot3ex(p1,p2);
end
% Trying to plot the limiting cone, but no success here :(
% k = [0 1];
% [X,Y,Z] = cylinder([0 1 0]');
% testsubject = surf(X,Y,Z);
% set(testsubject,'FaceAlpha',0.5)
% N = 50;
% r = linspace(0, 1, N);
% [X,Y,Z] = cylinder(r, N);
%
% h = surf(X, Y, Z);
%
% rotate(h, [1 1 0], 90);
plot3ex.m:
function p = plot3ex(varargin)
% Plots a line from each p1 to each p2.
% Inputs:
% p1 3xN
% p2 3xN
% args plot3 configuration string
% NOTE: p1 and p2 number of points can range from 1 to N
% but if the number of points are different, one must be 1!
% PVB 2016
p1 = varargin{1};
p2 = varargin{2};
extraArgs = varargin(3:end);
N1 = size(p1,2);
N2 = size(p2,2);
N = N1;
if N1 == 1 && N2 > 1
N = N2;
elseif N1 > 1 && N2 == 1
N = N1
elseif N1 ~= N2
error('if size(p1,2) ~= size(p1,2): size(p1,2) and/or size(p1,2) must be 1 !');
end
for i=1:N
i1 = i;
i2 = i;
if i > N1
i1 = N1;
end
if i > N2
i2 = N2;
end
x = [p1(1,i1) p2(1,i2)];
y = [p1(2,i1) p2(2,i2)];
z = [p1(3,i1) p2(3,i2)];
p = plot3(x,y,z,extraArgs{:});
end
Here’s the solution. It’s based on the wonderful answer at https://math.stackexchange.com/a/205589/81266. I found this answer by googling “random points on spherical cap”, after I learned on Mathworld that a spherical cap is this cut of a 3-sphere with a plane.
Here’s the function:
function r = randSphericalCap(coneAngleDegree, coneDir, N, RNG)
if ~exist('coneDir', 'var') || isempty(coneDir)
coneDir = [0;0;1];
end
if ~exist('N', 'var') || isempty(N)
N = 1;
end
if ~exist('RNG', 'var') || isempty(RNG)
RNG = RandStream.getGlobalStream();
end
coneAngle = coneAngleDegree * pi/180;
% Generate points on the spherical cap around the north pole [1].
% [1] See https://math.stackexchange.com/a/205589/81266
z = RNG.rand(1, N) * (1 - cos(coneAngle)) + cos(coneAngle);
phi = RNG.rand(1, N) * 2 * pi;
x = sqrt(1-z.^2).*cos(phi);
y = sqrt(1-z.^2).*sin(phi);
% If the spherical cap is centered around the north pole, we're done.
if all(coneDir(:) == [0;0;1])
r = [x; y; z];
return;
end
% Find the rotation axis `u` and rotation angle `rot` [1]
u = normc(cross([0;0;1], normc(coneDir)));
rot = acos(dot(normc(coneDir), [0;0;1]));
% Convert rotation axis and angle to 3x3 rotation matrix [2]
% [2] See https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
crossMatrix = #(x,y,z) [0 -z y; z 0 -x; -y x 0];
R = cos(rot) * eye(3) + sin(rot) * crossMatrix(u(1), u(2), u(3)) + (1-cos(rot))*(u * u');
% Rotate [x; y; z] from north pole to `coneDir`.
r = R * [x; y; z];
end
function y = normc(x)
y = bsxfun(#rdivide, x, sqrt(sum(x.^2)));
end
This code just implements joriki’s answer on math.stackexchange, filling in all the details that joriki omitted.
Here’s a script that shows how to use it.
clearvars
coneDir = [1;1;1];
coneAngleDegree = 30;
N = 1e4;
sol = randSphericalCap(coneAngleDegree, coneDir, N);
figure;plot3(sol(1,:), sol(2,:), sol(3,:), 'b.', 0,0,0,'rx');
grid
xlabel('x'); ylabel('y'); zlabel('z')
legend('random points','origin','location','best')
title('Final random points on spherical cap')
Here is a 3D plot of 10'000 points from the 30° spherical cap centered around the [1; 1; 1] vector:
Here’s 120° spherical cap:
Now, if you look at the histogram of the angles between these random points at the coneDir = [1;1;1], you will see that the distribution is skewed. Here’s the distribution:
Code to generate this:
normc = #(x) bsxfun(#rdivide, x, sqrt(sum(x.^2)));
mysubspace = #(a,b) real(acos(sum(bsxfun(#times, normc(a), normc(b)))));
angs = arrayfun(#(i) mysubspace(coneDir, sol(:,i)), 1:N) * 180/pi;
nBins = 16;
[n, edges] = histcounts(angs, nBins);
centers = diff(edges(1:2))*[0:(length(n)-1)] + mean(edges(1:2));
figure('color','white');
bar(centers, n);
xlabel('Angle (degrees)')
ylabel('Frequency')
title(sprintf('Histogram of angles between coneDir and random points: %d deg', coneAngleDegree))
Well, this makes sense! If you generate points from the 120° spherical cap around coneDir, of course the 1° cap is going to have very few of those samples, whereas the strip between the 10° and 11° caps will have far more points. So what we want to do is normalize the number of points at a given angle by the surface area of the spherical cap at that angle.
Here’s a function that gives us the surface area of the spherical cap with radius R and angle in radians theta (equation 16 on Mathworld’s spherical cap article):
rThetaToH = #(R, theta) R * (1 - cos(theta));
rThetaToS = #(R, theta) 2 * pi * R * rThetaToH(R, theta);
Then, we can normalize the histogram count for each bin (n above) by the difference in surface area of the spherical caps at the bin’s edges:
figure('color','white');
bar(centers, n ./ diff(rThetaToS(1, edges * pi/180)))
The figure:
This tells us “the number of random vectors divided by the surface area of the spherical segment between histogram bin edges”. This is uniform!
(N.B. If you do this normalized histogram for the vectors generated by your original code, using rejection sampling, the same holds: the normalized histogram is uniform. It’s just that rejection sampling is expensive compared to this.)
(N.B. 2: note that the naive way of picking random points on a sphere—by first generating azimuth/elevation angles and then converting these spherical coordinates to Cartesian coordinates—is no good because it bunches points near the poles: Mathworld, example, example 2. One way to pick points on the entire sphere is sampling from the 3D normal distribution: that way you won’t get bunching near poles. So I believe that your original technique is perfectly appropriate, giving you nice, evenly-distributed points on the sphere without any bunching. This algorithm described above also does the “right thing” and should avoid bunching. Carefully evaluate any proposed algorithms to ensure that the bunching-near-poles problem is avoided.)
it is better to use spherical coordinates and convert it to cartesian coordinates:
coneDirtheta = rand(1) * 2 * pi;
coneDirphi = rand(1) * pi;
coneAngle = 45;
N = 1000;
%perfom transformation preventing concentration of points around the pole
rpolar = acos(cos(coneAngle/2*pi/180) + (1-cos(coneAngle/2*pi/180)) * rand(N, 1));
thetapolar = rand(N,1) * 2 * pi;
x0 = rpolar .* cos(thetapolar);
y0 = rpolar .* sin(thetapolar);
theta = coneDirtheta + x0;
phi = coneDirphi + y0;
r = rand(N, 1);
x = r .* cos(theta) .* sin(phi);
y = r .* sin(theta) .* sin(phi);
z = r .* cos(phi);
scatter3(x,y,z)
if all points should be of length 1 set r = ones(N,1);
Edit:
since intersection of cone with sphere forms a circle first we create random points inside a circle with raduis of (45 / 2) in polar coordinates and as #Ahmed Fasih commented to prevent concentration of points near the pole we should first transform this random points, then convert polar to cartesian 2D coordinates to form x0 and y0
we can use x0 and y0 as phi & theta angle of spherical coordinates and add coneDirtheta & coneDirphi as offsets to these coordinates.
then convert spherical to cartesian 3D coordinates

In matlab, how to use k means to make 30 clusters with circle around each cluster and mark the center?

In matlab, if I have a code which draws a circle and generates 100 random points inside it. I want to use k means to cluster these 100 points into 30 clusters with a circle around each cluster to differentiate between the clusters and i want to mark the center if each cluster.this is the code of the circle and the 100 random points inside it . Any help please ?
%// Set parameters
R =250; %// radius
C = [0 0]; %// center [x y]
N = 100; %// number of points inside circle
%// generate circle boundary
t = linspace(0, 2*pi,100);
x = R*cos(t) + C(1);
y = R*sin(t) + C(2);
%// generate random points inside it
th = 2*pi*rand(N,1);
r = R*randnlimit(0, 1, 0.5, 1, [N 1]);
xR = r.*cos(th) + C(1);
yR = r.*sin(th) + C(2);
%// Plot everything
figure(1), clf, hold on
% subplot(1,N0,1);
plot(x,y,'b');
hold on
text(0,0,'C')
plot(xR,yR,'p')
axis equal
zR=cell(N,1);
for i=1:N
zR{i,1}= [xR(i) yR(i)];
end
m=cell2mat(zR);
function clusterCircle()
%// Set parameters
R = 250; %// radius
C = [0 0]; %// center [x y]
N = 100; %// number of points inside circle
k = 30; %// number of clusters
%// generate circle boundary
t = linspace(0, 2*pi, 100);
x = R*cos(t) + C(1);
y = R*sin(t) + C(2);
%// generate random points inside it
th = 2*pi*rand(N,1);
r = R*randnlimit(0, 1, 0.5, 1, [N 1]);
xR = r.*cos(th) + C(1);
yR = r.*sin(th) + C(2);
%// some simple k-means:
% initial centroids:
% -> use different method, if k > N
% -> can be done more reasonable (e.g. run k-Means for different
% seeds, select seeds equidistant, etc.)
xC = xR(1:k)';
yC = yR(1:k)';
% run:
clusters = zeros(N,1);
clusters_old = ones(N,1);
while sum((clusters - clusters_old).^2) > 0
clusters_old = clusters;
[~,clusters] = min((bsxfun(#minus,xR,xC)).^2 + ...
(bsxfun(#minus,yR,yC)).^2 , [] , 2);
for kIdx = 1:k
xC(kIdx) = mean(xR(clusters==kIdx));
yC(kIdx) = mean(yR(clusters==kIdx));
end
end
%// Plot everything
figure(1);
clf;
hold on;
% -> plot circle and center
text(C(1),C(2),'C');
plot(x,y,'k');
% -> plot clusters
co = hsv(k);
for kIdx = 1:k
% plot cluster points
plot(xR(clusters==kIdx),yR(clusters==kIdx),'p','Color',co(kIdx,:));
% plot cluster circle
maxR = sqrt(max((xR(clusters==kIdx)-xC(kIdx)).^2 + ...
(yR(clusters==kIdx)-yC(kIdx)).^2));
x = maxR*cos(t) + xC(kIdx);
y = maxR*sin(t) + yC(kIdx);
plot(x,y,'Color',co(kIdx,:));
% plot cluster center
text(xC(kIdx),yC(kIdx),num2str(kIdx));
end
axis equal
end
%// creates random numbers, not optimized!
function rn = randnlimit(a,b,mu,sigma,sz)
rn = zeros(sz);
for idx = 1:prod(sz)
searchOn = true;
while searchOn
rn_loc = randn(1) * sigma + mu;
if rn_loc >= a && rn_loc <= b
searchOn = false;
end
end
rn(idx) = rn_loc;
end
end