Getting a random element in array by a generic function - swift

func ramElment<X, T: CollectionType >(list: T) -> X {
let len = UInt32(list.count)
let element = arc4random_uniform(len)
return list[element]
}
it pops up:
error: cannot invoke initializer for type UInt32 with an argument list of type '(T.Index.Distance)'
let len = UInt32(list.count)
I have checked the T.Index.Distance is Int type. but why can't i change the type to UInt32?
thanks!

The Index of a CollectionType is
a ForwardIndexType:
public protocol ForwardIndexType : _Incrementable {
// ...
typealias Distance : _SignedIntegerType = Int
// ...
}
This means that the associated type Distance must conform to _SignedIntegerType, and (by default) is Int unless declared (or inferred)
otherwise.
Example: The following is a valid type conforming to ForwardIndexType,
with Distance == Int16:
struct MyIndex : ForwardIndexType {
var value : Int16
func advancedBy(n: Int16) -> MyIndex {
return MyIndex(value: value + n)
}
func distanceTo(end: MyIndex) -> Int16 {
return end.value - value
}
func successor() -> MyIndex {
return MyIndex(value: value + 1)
}
}
func ==(lhs : MyIndex, rhs : MyIndex) -> Bool {
return lhs.value == rhs.value
}
And here is a (for demonstration purposes, otherwise pretty useless)
type conforming to CollectionType with Index == MyIndex,
Index.Distance == Int16:
struct MyCollectionType : CollectionType {
var startIndex : MyIndex { return MyIndex(value: 0) }
var endIndex : MyIndex { return MyIndex(value: 3) }
subscript(position : MyIndex) -> String {
return "I am element #\(position.value)"
}
}
Example:
let coll = MyCollectionType()
for elem in coll {
print(elem)
}
/*
I am element #0
I am element #1
I am element #2
*/
But we can also define a forward index type without declaring
any Distance type, and using the default protocol implementations
for advancedBy() and distanceTo():
struct MyOtherIndex : ForwardIndexType {
var value : Int16
func successor() -> MyOtherIndex {
return MyOtherIndex(value: value + 1)
}
}
func ==(lhs : MyOtherIndex, rhs : MyOtherIndex) -> Bool {
return lhs.value == rhs.value
}
Now MyOtherIndex.Distance == Int because that is the default type
as defined in ForwardIndexType.
So how does this apply to your function?
You cannot assume that
Index.Distance is Int for an arbitrary collection.
You can restrict the function to collection types with
Index.Distance == Int:
func randomElement<T: CollectionType where T.Index.Distance == Int>(list: T)
But you can also utilize that _SignedIntegerType can be converted to and from IntMax:
func randomElement<T: CollectionType>(list: T) -> T.Generator.Element {
let len = UInt32(list.count.toIntMax())
let element = IntMax(arc4random_uniform(len))
return list[list.startIndex.advancedBy(T.Index.Distance(element))]
}
Note also that the return type is determined as T.Generator.Element,
and cannot be an arbitrary generic type X.
This function works with arbitrary collections, for example Array, ArraySlice, or String.CharacterView:
let array = [1, 1, 2, 3, 5, 8, 13]
let elem1 = randomElement([1, 2, 3])
let slice = array[2 ... 3]
let elem2 = randomElement(slice)
let randomChar = randomElement("abc".characters)
but also with the above custom collection type:
let mc = MyCollectionType()
let r = randomElement(mc)

In the title of your question you talk about Array. But in your code you are declaring the input param as a CollectionType.
If you really want to receive a Generic Array param then this is the code
func randomElement<T>(list: [T]) -> T {
let len = UInt32(list.count)
let random = Int(arc4random_uniform(len))
return list[random]
}

This is the simplest example what you want.
extension CollectionType where Index.Distance == Int {
func randomElement() -> Self.Generator.Element {
let randomIndex = Int(arc4random_uniform(UInt32(count)))
return self[startIndex.advancedBy(randomIndex)]
}
}

Related

having difficulties understanding complex swift associatedtype declaration

I saw the line of code below at swift github repository
associatedtype Indices : _RandomAccessIndexable, BidirectionalCollection
= DefaultRandomAccessIndices<Self>
I know that an associatedtype is an type alias for protocols, and i know how to interpret it in simple cases
But can someone please explain to me the line of code i saw from swift github repository?
That means that the associated type Indices must conform to
_RandomAccessIndexable and BidirectionalCollection, and by default is DefaultRandomAccessIndices<Self> unless declared (or inferred) otherwise (where Self is the actual type adopting the protocol).
Example:
struct MyIndex : Comparable {
var value : Int16
static func ==(lhs : MyIndex, rhs : MyIndex) -> Bool {
return lhs.value == rhs.value
}
static func <(lhs : MyIndex, rhs : MyIndex) -> Bool {
return lhs.value < rhs.value
}
}
struct MyCollectionType : RandomAccessCollection {
var startIndex : MyIndex { return MyIndex(value: 0) }
var endIndex : MyIndex { return MyIndex(value: 3) }
subscript(position : MyIndex) -> String {
return "I am element #\(position.value)"
}
func index(after i: MyIndex) -> MyIndex {
guard i != endIndex else { fatalError("Cannot increment endIndex") }
return MyIndex(value: i.value + 1)
}
func index(before i: MyIndex) -> MyIndex {
guard i != startIndex else { fatalError("Cannot decrement startIndex") }
return MyIndex(value: i.value - 1)
}
}
let coll = MyCollectionType()
let i = coll.indices
print(type(of: i)) // DefaultRandomAccessIndices<MyCollectionType>
MyCollectionType is a (minimal?) implementation of a
RandomAccessCollection, using a custom index type MyIndex.
It does not define its own indices method or Indices type,
so that Indices becomes the default associated type,
and
indices
is a default protocol extension method of RandomAccessCollection.

Adopting CollectionType (Collection) in Swift

I'm writing a graphics library to display data in a graph. Since most of the projects I do tend to have a large learning component in them, I decided to create a generically typed struct to manage my data set DataSet<T: Plottable> (note here that Plottable is also Comparable).
In trying to conform to MutableCollectionType, I've run across an error. I'd like to use the default implementation of sort(), but the compiler is giving the following error when trying to use the sorting function.
Ambiguous reference to member 'sort()'
Here's a code example:
var data = DataSet<Int>(elements: [1,2,3,4])
data.sort() //Ambiguous reference to member 'sort()'
The compiler suggests two candidates, but will not actually display them to me. Note that the compiler error goes away if I explicitly implement sort() on my struct.
But the bigger question remains for me. What am I not seeing that I expect the default implementation to be providing? Or am I running across a bug in Swift 3 (this rarely is the case... usually I have overlooked something).
Here's the balance of the struct:
struct DataSet<T: Plottable>: MutableCollection, BidirectionalCollection {
typealias Element = T
typealias Iterator = DataSetIterator<T>
typealias Index = Int
/**
The list of elements in the data set. Private.
*/
private var elements: [Element] = []
/**
Initalize the data set with an array of data.
*/
init(elements data: [T] = []) {
self.elements = data
}
//MARK: Sequence Protocol
func makeIterator() -> DataSetIterator<T> {
return DataSetIterator(self)
}
//MARK: Collection Protocol
subscript(_ index:DataSet<T>.Index) -> DataSet<T>.Iterator.Element {
set {
elements[index] = newValue
}
get {
return elements[index]
}
}
subscript(_ inRange:Range<DataSet<T>.Index>) -> DataSet<T> {
set {
elements.replaceSubrange(inRange, with: newValue)
}
get {
return DataSet<T>(elements: Array(elements[inRange]))
}
}
//required index for MutableCollection and BidirectionalCollection
var endIndex: Int {
return elements.count
}
var startIndex: Int {
return 0
}
func index(after i: Int) -> Int {
return i+1
}
func index(before i: Int) -> Int {
return i-1
}
mutating func append(_ newElement: T) {
elements.append(newElement)
}
// /**
// Sorts the elements of the DataSet from lowest value to highest value.
// Commented because I'd like to use the default implementation.
// - note: This is equivalent to calling `sort(by: { $0 < $1 })`
// */
// mutating func sort() {
// self.sort(by: { $0 < $1 })
// }
//
// /**
// Sorts the elements of the DataSet by an abritrary block.
// */
// mutating func sort(by areInIncreasingOrder: #noescape (T, T) -> Bool) {
// self.elements = self.elements.sorted(by: areInIncreasingOrder)
// }
/**
Returns a `DataSet<T>` with the elements sorted by a provided block.
This is the default implementation `sort()` modified to return `DataSet<T>` rather than `Array<T>`.
- returns: A sorted `DataSet<T>` by the provided block.
*/
func sorted(by areInIncreasingOrder: #noescape (T, T) -> Bool) -> DataSet<T> {
return DataSet<T>(elements: self.elements.sorted(by: areInIncreasingOrder))
}
func sorted() -> DataSet<T> {
return self.sorted(by: { $0 < $1 })
}
}
Your DataSet is a BidirectionalCollection. The sort() you're trying to use requires a RandomAccessCollection. The most important thing you need to add is an Indicies typealias.
typealias Indices = Array<Element>.Indices
Here's my version of your type:
protocol Plottable: Comparable {}
extension Int: Plottable {}
struct DataSet<Element: Plottable>: MutableCollection, RandomAccessCollection {
private var elements: [Element] = []
typealias Indices = Array<Element>.Indices
init(elements data: [Element] = []) {
self.elements = data
}
var startIndex: Int {
return elements.startIndex
}
var endIndex: Int {
return elements.endIndex
}
func index(after i: Int) -> Int {
return elements.index(after: i)
}
func index(before i: Int) -> Int {
return elements.index(before: i)
}
subscript(position: Int) -> Element {
get {
return elements[position]
}
set {
elements[position] = newValue
}
}
subscript(bounds: Range<Int>) -> DataSet<Element> {
get {
return DataSet(elements: Array(elements[bounds]))
}
set {
elements[bounds] = ArraySlice(newValue.elements)
}
}
}
var data = DataSet(elements: [4,2,3,1])
data.sort()
print(data.elements) // [1,2,3,4]
You don't actually need an Iterator if you don't want one. Swift will give you Sequence automatically if you implement Collection.

How can I write a function that will unwrap a generic property in swift assuming it is an optional type?

So far I have only been able to achieve this using a global function. I am not sure if it is possible but I was hoping to write an extension to a generic class that would hopefully achieve the same thing.
Below is the working global function it is using SignalProducer class from ReactiveCocoa but the principle should be the same for any generic class.
func ignoreNilValues <Value,Error> (producer: SignalProducer<Value?,Error>) -> SignalProducer<Value, Error> {
return producer.filter { return $0 != nil }.map { $0! }
}
Update:
I have made progress but have still fallen short of a complete solution
Given any class with some generic property
class GenericClass<SomeType> {
var someProperty: [SomeType] = []
}
How can I write an extension that will filter any optional values and return the value using the Wrapped type?
The following will filter any nil values but still return it as the Optional type.
protocol AnOptional {
var isNil: Bool {get}
}
extension Optional : AnOptional {
var isNil: Bool {
get {
guard let hasValue = self.map({ (value: Wrapped) -> Bool in
return true
}) else {
return true
}
return !hasValue
}
}
}
extension GenericClass where SomeType : AnOptional {
func filterNilValuesOfSomeProperty() -> [SomeType] {
return someProperty.filter({ (anOptional: AnOptional) -> Bool in
return !anOptional.isNil
})
}
}
As can be seen
let aClass = GenericClass<Int?>()
aClass.someProperty = [3,5,6,nil,4,3,6, nil]
let x = aClass.someProperty
//x = [Some(3),Some(5),Some(6),nil,Some(4),Some(3),Some(6), nil]
let y = aClass.filterNilValuesOfSomeProperty()
//y = [Some(3),Some(5),Some(6),Some(4),Some(3),Some(6)]
Is it possible to write a class extension that would return the wrapped type? In the example above it would be [Int] instead of [Int?].
I rewrote the global function solution for this example.
func ignoreNilValues <Value> (aClass: GenericClass<Value?>) -> GenericClass<Value> {
let aNewClass = GenericClass<Value>()
aNewClass.someProperty = aClass.someProperty.filter({ (v: Value?) -> Bool in
v != nil
}).map { (oldValue: Value?) -> Value in
return oldValue!
}
return aNewClass
}
let z = ignoreNilValues(aClass).someProperty
//z = [3, 5, 6, 4, 3, 6]
The "trick" is to define a protocol to which all optionals conform
(this is from Creating an extension to filter nils from an Array in Swift
with a minor simplification; the idea goes back to this Apple Forum Thread):
protocol OptionalType {
typealias Wrapped
func intoOptional() -> Wrapped?
}
extension Optional : OptionalType {
func intoOptional() -> Wrapped? {
return self
}
}
You can use that in your case as:
class GenericClass<SomeType> {
var someProperty: [SomeType] = []
}
extension GenericClass where SomeType : OptionalType {
func filterNilValuesOfSomeProperty() -> [SomeType.Wrapped] {
return someProperty.flatMap { $0.intoOptional() }
}
}
which uses the flatMap() method from SequenceType:
extension SequenceType {
/// Return an `Array` containing the non-nil results of mapping
/// `transform` over `self`.
///
/// - Complexity: O(*M* + *N*), where *M* is the length of `self`
/// and *N* is the length of the result.
#warn_unused_result
public func flatMap<T>(#noescape transform: (Self.Generator.Element) throws -> T?) rethrows -> [T]
}
Example:
let aClass = GenericClass<Int?>()
aClass.someProperty = [3,5,6,nil,4,3,6, nil]
let x = aClass.someProperty
print(x) // [Optional(3), Optional(5), Optional(6), nil, Optional(4), Optional(3), Optional(6), nil]
let y = aClass.filterNilValuesOfSomeProperty()
print(y) // [3, 5, 6, 4, 3, 6]
In Swift 3 and later the protocol has to be defined as
protocol OptionalType {
associatedtype Wrapped
func intoOptional() -> Wrapped?
}
I have this solution using in my app, create a protocol, and added an extension to Optional.
protocol OptionalUnwrap {
associatedtype Wrapped
func unwrap(default defaultValue: #autoclosure () -> Wrapped) -> Wrapped
}
extension Optional: OptionalUnwrap {
func unwrap(default defaultValue: #autoclosure () -> Wrapped) -> Wrapped {
if let value = self {
return value
}
return defaultValue()
}
}
You can use it like this, you have to provide a default value, so if optional is nil it will return the default value. It works with all types.
struct StructName {
var name: String
var age: Int
}
var structName3: StructName?
let unwrapped = structName3.unwrap(default: StructName(name: "", age: 2345))
print(unwrapped.age)
var version: Int?
version.unwrap(default: 5)
var subject: String? = "iOS"
subject.unwrap(default: "")

Elegant way to get the first n elements of a SequenceType

Is there an elegant way (think one-liner) to get the first n elements of a SequenceType in Swift?
I could of course write a for-loop that terminates after n elements but that's a little bulky.
Note also that the solution should be able to deal with infinite sequences.
Isn't it exactly what mySequence.prefix(numberOfElements) does?
In Swift 2, you can create this as an extension:
extension SequenceType {
func take(n: Int) -> [Generator.Element] {
var result: [Generator.Element] = []
var g = self.generate()
for _ in 1...n {
if let next = g.next() {
result.append(next)
} else {
break
}
}
return result
}
}
In Swift 1, it would have to written as a function:
func take<Seq: SequenceType>(n: Int, xs: Seq) -> [Seq.Generator.Element] {
var result: [Seq.Generator.Element] = []
var g = xs.generate()
for _ in 1...n {
if let next = g.next() {
result.append(next)
} else {
break
}
}
return result
}
Note that in either case, SequenceType does not specify what happens if you call generate() more than once. It could return the same values (as in an Array). It could return different values (as in an audio data stream). It could return nothing at all. So the caller of take() may need some special knowledge about its impact on the sequence.
SequenceType only supports generate(). Perhaps a more 'Swiftly' approach would be to define a Generator that given a start and end index and a 'base' generator would skip over the first elements, start returning some, and then stop after end index. Like this:
struct SubscriptGenerator<Base: GeneratorType> : GeneratorType {
var nowIndex : Int = 0
let endIndex : Int
let begIndex : Int
var generator : Base
init (generator: Base, startIndex: Int, endIndex: Int) {
precondition(startIndex < endIndex, "oops")
self.generator = generator
self.endIndex = endIndex
self.begIndex = startIndex
}
// MARK - GeneratorType
typealias Element = Base.Element
mutating func next() -> Element? {
while (nowIndex < begIndex) { nowIndex++; generator.next () }
return nowIndex++ < endIndex ? generator.next() : nil
}
}
This is only an example. One could define an convenience init() that takes a SequenceType and produces the base generator. In action:
75> var gen = [10,20,30,40,50].generate()
76> var sg = SubscriptGenerator(generator: gen, startIndex: 1, endIndex:3)
sg: SubscriptGenerator<IndexingGenerator<[Int]>> = { ... }
77> sg.next()
$R2: Int? = 20
78> sg.next()
$R3: Int? = 30
79> sg.next()
$R4: Int? = nil
See Swift's EnumerateGenerator for an example.
Note: it might be the Stride nexus of Swift functionality does what you want already.
Why not
var seq = NominalSequence().generate()
var a = (0..<10).map({_ in seq.next()!})
?
Two lines, but funtional-ish.

Swift: Function returning an Array of IntegerType

I would like to create a function that takes an NSData parameter, and, depending on what it reads from the NSData it returns an Array<Int8>, Array<Int16>, Array<Int32>, or Array<Int64>.
Basically, I need to return an array of IntegerType, with the specific subtype being determined at runtime.
I am stuck at the signature declaration of the function. (The inside would just be a simple switch, that would create the specific array type and return it).
The following very basic test does not compile
class Test {
func test(data:NSData) -> Array<IntegerType> {
return [1, 2, 3]
}
}
EDIT
It seems to be currently not possible, not because of having to return an array of a protocol type, but because the IntegerType protocol uses Self. Here is an interesting related question
IntegerType is a protocol, so the following should work:
class Test {
func test(data:NSData) -> Array<T: IntegerType> {
[1, 2, 3]
}
}
You can use enum with associated values for that:
enum IntArray {
case Int8([Swift.Int8])
case Int16([Swift.Int16])
case Int32([Swift.Int32])
case Int64([Swift.Int64])
}
class Test {
func test(data:NSData) -> IntArray {
return IntArray.Int8([1, 2, 3]);
}
}
on user side:
let obj = Test()
let array = obj.test(dat)
switch array {
case .Int8(let ary):
// here, ary is [Int8]
...
case .Int16(let ary):
// here, ary is [Int16]
...
case .Int32(let ary):
// here, ary is [Int32]
...
case .Int64(let ary):
// here, ary is [Int64]
...
}
As others have said in the comments, this won't work if you are trying to determine the function's return type at runtime. Swift generics only work at compile time, so changing the return type based off of what's in an NSData won't work.
If you can determine the return type at compile time, then you can use a generic function declaration like so:
func test<T: IntegerType>(data: NSData) -> Array<T> {
return [1, 2, 3]
}
Note: If you don't specify the type explicitly in your function somehow, then you'll need to define the variable the value returned from the function is assigned to. Like so:
var int8Array: Array<Int8> = test(NSData())
Since none of the generic based solutions are working, why don't you try returning [Any] and just check the return type as follows:-
func test(data:NSData) -> [Any]
{
var value1:Int8 = 1
var value2:Int8 = 2
return [value1,value2]
}
var x = test(NSData())
for xin in x
{
var intxin = xin as? Int8
if intxin != nil
{
println(intxin!)
}
}
The way I solved my problem was by defining the following protocol:
protocol IntegerArrayProtocol {
init(rawData: NSData!, length: Int)
func count() -> Int
subscript(index:Int) -> Int { get }
}
This deals with all the operations I need to perform on the array:
Read it from raw memory
Count how many elements it has
Access its elements by index, always returning Ints, regardless of the underlying integer
type
Then, I created a parameterized class that implements the protocol:
final class IntegerArray<T: ConvertibleToInteger>: IntegerArrayProtocol {
let arr: [T]
init(rawData: NSData!, length: Int){
//create array and allocate memory for all elements
arr = Array<T>(count: length, repeatedValue: T.zero())
// read it from the NSData source
// ....
}
func count() -> Int{
return arr.count
}
subscript(index:Int) -> Int {
get {
return arr[index].asInt()
}
}
}
The parameter types T should be able to convert themselves to Int, and should have a zero value (used when I initialize the array). For that, I created the ConvertibleToInteger protocol, which is used above to restrict the possible Ts:
protocol ConvertibleToInteger {
class func zero() -> Self
func asInt() -> Int
}
Then, I extended every type that I would like to create arrays of:
extension Int8: ConvertibleToInteger{
static func zero() -> Int8{
return 0
}
func asInt() -> Int{
return Int(self)
}
}
extension Int16: ConvertibleToInteger{
static func zero() -> Int16{
return 0
}
func asInt() -> Int{
return Int(self)
}
}
extension Int32: ConvertibleToInteger{
static func zero() -> Int32{
return 0
}
func asInt() -> Int{
return Int(self)
}
}
extension Int64: ConvertibleToInteger{
static func zero() -> Int64{
return 0
}
func asInt() -> Int{
return Int(self)
}
}
Finally, to read an array from NSData, I created the following function:
func readArray(rawData: NSData, length: Int): IntegerArrayProtocol? {
qBytes = // read from NSData how many bytes each element is
switch(qBytes){
case 1:
return IntegerArray<Int8>(rawData: rawData, length: length)
case 2:
return IntegerArray<Int16>(rawData: rawData, length: length)
case 3 ... 4:
return IntegerArray<Int32>(rawData: rawData, length: length)
case 5 ... 8:
return IntegerArray<Int64>(rawData: rawData, length: length)
default:
return nil
}
}