I'm new to Spark and was wondering about closures.
I have two RDDs, one containing a list of IDs and a values, and the other containing a list of selected IDs.
Using a map, I want to increase the value of the element, if the other RDD contains its ID, like so.
val ids = sc.parallelize(List(1,2,10,5))
val vals = sc.parallelize(List((1, 0), (2, 0), (3,0), (4,0)))
vals.map( v => {
if(ids.collect().contains(v._1)){
(v._1, 1)
}
})
However the job hangs and never completes.
What is the proper way to do this,
Thanks for your help!
Your implementation tries to use one RDD (ids) inside a closure used to map another - this isn't allowed in Spark applications: anything to be used in a closure must be serializable (and preferably small), since it will be serialized and sent to each worker.
a leftOuterJoin between these RDDs should get you what you want:
val ids = sc.parallelize(List(1,2,10,5))
val vals = sc.parallelize(List((1, 0), (2, 0), (3,0), (4,0)))
val result = vals
.leftOuterJoin(ids.keyBy(i => i))
.mapValues({
case (v, Some(matchingId)) => v + 1 // increase value if match found
case (v, None) => v // leave value as-is otherwise
})
The leftOuterJoin expects two key-value RDDs, hence we artificially extract a key from the ids RDD using the identity function. Then we map the values of each resulting (id: Int, (value: Int, matchingId: Option[Int])) record into either v or v+1.
Generally, you should always aim to minimize the use of actions like collect when using Spark, as such actions move data back from the distributed cluster into your driver application.
Related
I have an RDD with strings like this (ordered in a specific way):
["A","B","C","D"]
And another RDD with lists like this:
["C","B","F","K"],
["B","A","Z","M"],
["X","T","D","C"]
I would like to order the elements in each list in the second RDD based on the order in which they appear in the first RDD. The order of the elements that do not appear in the first list is not of concern.
From the above example, I would like to get an RDD like this:
["B","C","F","K"],
["A","B","Z","M"],
["C","D","X","T"]
I know I am supposed to use a broadcast variable to broadcast the first RDD as I process each list in the second RDD. But I am very new to Spark/Scala (and functional programming in general) so I am not sure how to do this.
I am assuming that the first RDD is small since you talk about broadcasting it. In that case you are right, broadcasting the ordering is a good way to solve your problem.
// generating data
val ordering_rdd = sc.parallelize(Seq("A","B","C","D"))
val other_rdd = sc.parallelize(Seq(
Seq("C","B","F","K"),
Seq("B","A","Z","M"),
Seq("X","T","D","C")
))
// let's start by collecting the ordering onto the driver
val ordering = ordering_rdd.collect()
// Let's broadcast the list:
val ordering_br = sc.broadcast(ordering)
// Finally, let's use the ordering to sort your records:
val result = other_rdd
.map( _.sortBy(x => {
val index = ordering_br.value.indexOf(x)
if(index == -1) Int.MaxValue else index
}))
Note that indexOf returns -1 if the element is not found in the list. If we leave it as is, all non-found elements would end up at the beginning. I understand that you want them at the end so I relpace -1 by some big number.
Printing the result:
scala> result.collect().foreach(println)
List(B, C, F, K)
List(A, B, Z, M)
List(C, D, X, T)
Sorry for the confusion in the initial question. Here is a questions with the reproducible example:
I have an rdd of [String] and I have a rdd of [String, Long]. I would like to have an rdd of [Long] based on the match of String of second with String of first. Example:
//Create RDD
val textFile = sc.parallelize(Array("Spark can also be used for compute intensive tasks",
"This code estimates pi by throwing darts at a circle"))
// tokenize, result: RDD[(String)]
val words = textFile.flatMap(line => line.split(" "))
// create index of distinct words, result: RDD[(String,Long)]
val indexWords = words.distinct().zipWithIndex()
As a result, I would like to have an RDD with indexes of words instead of words in "Spark can also be used for compute intensive tasks".
Sorry again and thanks
If I understand you correctly, you're interested in the indices of works that also appear in Spark can also be used for compute intensive tasks.
If so - here are two versions with identical outputs but different performance characteristics:
val lookupWords: Seq[String] = "Spark can also be used for compute intensive tasks".split(" ")
// option 1 - use join:
val lookupWordsRdd: RDD[(String, String)] = sc.parallelize(lookupWords).keyBy(w => w)
val result1: RDD[Long] = indexWords.join(lookupWordsRdd).map { case (key, (index, _)) => index }
// option 2 - assuming list of lookup words is short, you can use a non-distributed version of it
val result2: RDD[Long] = indexWords.collect { case (key, index) if lookupWords.contains(key) => index }
The first option creates a second RDD with the words whose indices we're interested in, uses keyBy to transform it into a PairRDD (with key == value!), joins it with your indexWords RDD and then maps to get the index only.
The second option should only be used if the list of "interesting words" is known not to be too large - so we can keep it as a list (and not RDD), and let Spark serialize it and send to workers for each task to use. We then use collect(f: PartialFunction[T, U]) which applies this partial function to get a "filter" and a "map" at once - we only return a value if the words exists in the list, and if so - we return the index.
I was getting an error of SPARK-5063 and given this answer, I found the solution to my problem:
//broadcast `indexWords`
val bcIndexWords = sc.broadcast(indexWords.collectAsMap)
// select `value` of `indexWords` given `key`
val result = textFile.map{arr => arr.split(" ").map(elem => bcIndexWords.value(elem))}
result.first()
res373: Array[Long] = Array(3, 7, 14, 6, 17, 15, 0, 12)
I am working with Apache Spark in Scala.
I have a problem when trying to manipulate one RDD with data from a second RDD. I am trying to pass the 2nd RDD as an argument to a function being 'mapped' against the first RDD, but seemingly the closure created on that function binds an uninitialized version of that value.
Following is a simpler piece of code that shows the type of problem I'm seeing. (My real example where I first had trouble is larger and less understandable).
I don't really understand the argument binding rules for Spark closures.
What I'm really looking for is a basic approach or pattern for how to manipulate one RDD using the content of another (which was previously constructed elsewhere).
In the following code, calling Test1.process(sc) will fail with a null pointer access in findSquare (as the 2nd arg bound in the closure is not initialized)
object Test1 {
def process(sc: SparkContext) {
val squaresMap = (1 to 10).map(n => (n, n * n))
val squaresRDD = sc.parallelize(squaresMap)
val primes = sc.parallelize(List(2, 3, 5, 7))
for (p <- primes) {
println("%d: %d".format(p, findSquare(p, squaresRDD)))
}
}
def findSquare(n: Int, squaresRDD: RDD[(Int, Int)]): Int = {
squaresRDD.filter(kv => kv._1 == n).first._1
}
}
Problem you experience has nothing to do with closures or RDDs which, contrary to popular belief, are serializable.
It is simply breaks a fundamental Spark rule which states that you cannot trigger an action or transformation from another action or transformation* and different variants of this question have been asked on SO multiple times.
To understand why that's the case you have to think about the architecture:
SparkContext is managed on the driver
everything that happens inside transformations is executed on the workers. Each worker have access only to its own part of the data and don't communicate with other workers**.
If you want to use content of multiple RDDs you have to use one of the transformations which combine RDDs, like join, cartesian, zip or union.
Here you most likely (I am not sure why you pass tuple and use only first element of this tuple) want to either use a broadcast variable:
val squaresMapBD = sc.broadcast(squaresMap)
def findSquare(n: Int): Seq[(Int, Int)] = {
squaresMapBD.value
.filter{case (k, v) => k == n}
.map{case (k, v) => (n, k)}
.take(1)
}
primes.flatMap(findSquare)
or Cartesian:
primes
.cartesian(squaresRDD)
.filter{case (n, (k, _)) => n == k}.map{case (n, (k, _)) => (n, k)}
Converting primes to dummy pairs (Int, null) and join would be more efficient:
primes.map((_, null)).join(squaresRDD).map(...)
but based on your comments I assume you're interested in a scenario when there is natural join condition.
Depending on a context you can also consider using database or files to store common data.
On a side note RDDs are not iterable so you cannot simply use for loop. To be able to do something like this you have to collect or convert toLocalIterator first. You can also use foreach method.
* To be precise you cannot access SparkContext.
** Torrent broadcast and tree aggregates involve communication between executors so it is technically possible.
RDD are not serializable, so you can't use an rdd inside an rdd trasformation.
Then I've never seen enumerate an rdd with a for statement, usually I use foreach statement that is part of rdd api.
In order to combine data from two rdd, you can leverage join, union or broadcast ( in case your rdd is small)
This is a newbie question.
Is it possible to transform an RDD like (key,1,2,3,4,5,5,666,789,...) with a dynamic dimension into a pairRDD like (key, (1,2,3,4,5,5,666,789,...))?
I feel like it should be super-easy but I cannot get how to.
The point of doing it is that I would like to sum all the values, but not the key.
Any help is appreciated.
I am using Spark 1.2.0
EDIT enlightened by the answer I explain my use case deeplier. I have N (unknown at compile time) different pairRDD (key, value), that have to be joined and whose values must be summed up. Is there a better way than the one I was thinking?
First of all if you just wanna sum all integers but first the simplest way would be:
val rdd = sc.parallelize(List(1, 2, 3))
rdd.cache()
val first = rdd.sum()
val result = rdd.count - first
On the other hand if you want to have access to the index of elements you can use rdd zipWithIndex method like this:
val indexed = rdd.zipWithIndex()
indexed.cache()
val result = (indexed.first()._2, indexed.filter(_._1 != 1))
But in your case this feels like overkill.
One more thing i would add, this looks like questionable desine to put key as first element of your rdd. Why not just instead use pairs (key, rdd) in your driver program. Its quite hard to reason about order of elements in rdd and i cant not think about natural situation in witch key is computed as first element of rdd (ofc i dont know your usecase so i can only guess).
EDIT
If you have one rdd of key value pairs and you want to sum them by key then do just:
val result = rdd.reduceByKey(_ + _)
If you have many rdds of key value pairs before counting you can just sum them up
val list = List(pairRDD0, pairRDD1, pairRDD2)
//another pairRDD arives in runtime
val newList = anotherPairRDD0::list
val pairRDD = newList.reduce(_ union _)
val resultSoFar = pairRDD.reduceByKey(_ + _)
//another pairRDD arives in runtime
val result = resultSoFar.union(anotherPairRDD1).reduceByKey(_ + _)
EDIT
I edited example. As you can see you can add additional rdd when every it comes up in runtime. This is because reduceByKey returns rdd of the same type so you can iterate this operation (Ofc you will have to consider performence).
I am new to Spark and Scala. I was confused about the way reduceByKey function works in Spark. Suppose we have the following code:
val lines = sc.textFile("data.txt")
val pairs = lines.map(s => (s, 1))
val counts = pairs.reduceByKey((a, b) => a + b)
The map function is clear: s is the key and it points to the line from data.txt and 1 is the value.
However, I didn't get how the reduceByKey works internally? Does "a" points to the key? Alternatively, does "a" point to "s"? Then what does represent a + b? how are they filled?
Let's break it down to discrete methods and types. That usually exposes the intricacies for new devs:
pairs.reduceByKey((a, b) => a + b)
becomes
pairs.reduceByKey((a: Int, b: Int) => a + b)
and renaming the variables makes it a little more explicit
pairs.reduceByKey((accumulatedValue: Int, currentValue: Int) => accumulatedValue + currentValue)
So, we can now see that we are simply taking an accumulated value for the given key and summing it with the next value of that key. NOW, let's break it further so we can understand the key part. So, let's visualize the method more like this:
pairs.reduce((accumulatedValue: List[(String, Int)], currentValue: (String, Int)) => {
//Turn the accumulated value into a true key->value mapping
val accumAsMap = accumulatedValue.toMap
//Try to get the key's current value if we've already encountered it
accumAsMap.get(currentValue._1) match {
//If we have encountered it, then add the new value to the existing value and overwrite the old
case Some(value : Int) => (accumAsMap + (currentValue._1 -> (value + currentValue._2))).toList
//If we have NOT encountered it, then simply add it to the list
case None => currentValue :: accumulatedValue
}
})
So, you can see that the reduceByKey takes the boilerplate of finding the key and tracking it so that you don't have to worry about managing that part.
Deeper, truer if you want
All that being said, that is a simplified version of what happens as there are some optimizations that are done here. This operation is associative, so the spark engine will perform these reductions locally first (often termed map-side reduce) and then once again at the driver. This saves network traffic; instead of sending all the data and performing the operation, it can reduce it as small as it can and then send that reduction over the wire.
One requirement for the reduceByKey function is that is must be associative. To build some intuition on how reduceByKey works, let's first see how an associative associative function helps us in a parallel computation:
As we can see, we can break an original collection in pieces and by applying the associative function, we can accumulate a total. The sequential case is trivial, we are used to it: 1+2+3+4+5+6+7+8+9+10.
Associativity lets us use that same function in sequence and in parallel. reduceByKey uses that property to compute a result out of an RDD, which is a distributed collection consisting of partitions.
Consider the following example:
// collection of the form ("key",1),("key,2),...,("key",20) split among 4 partitions
val rdd =sparkContext.parallelize(( (1 to 20).map(x=>("key",x))), 4)
rdd.reduceByKey(_ + _)
rdd.collect()
> Array[(String, Int)] = Array((key,210))
In spark, data is distributed into partitions. For the next illustration, (4) partitions are to the left, enclosed in thin lines. First, we apply the function locally to each partition, sequentially in the partition, but we run all 4 partitions in parallel. Then, the result of each local computation are aggregated by applying the same function again and finally come to a result.
reduceByKey is an specialization of aggregateByKey aggregateByKey takes 2 functions: one that is applied to each partition (sequentially) and one that is applied among the results of each partition (in parallel). reduceByKey uses the same associative function on both cases: to do a sequential computing on each partition and then combine those results in a final result as we have illustrated here.
In your example of
val counts = pairs.reduceByKey((a,b) => a+b)
a and b are both Int accumulators for _2 of the tuples in pairs. reduceKey will take two tuples with the same value s and use their _2 values as a and b, producing a new Tuple[String,Int]. This operation is repeated until there is only one tuple for each key s.
Unlike non-Spark (or, really, non-parallel) reduceByKey where the first element is always the accumulator and the second a value, reduceByKey operates in a distributed fashion, i.e. each node will reduce it's set of tuples into a collection of uniquely-keyed tuples and then reduce the tuples from multiple nodes until there is a final uniquely-keyed set of tuples. This means as the results from nodes are reduced, a and b represent already reduced accumulators.
Spark RDD reduceByKey function merges the values for each key using an associative reduce function.
The reduceByKey function works only on the RDDs and this is a transformation operation that means it is lazily evaluated. And an associative function is passed as a parameter, which is applied to source RDD and creates a new RDD as a result.
So in your example, rdd pairs has a set of multiple paired elements like (s1,1), (s2,1) etc. And reduceByKey accepts a function (accumulator, n) => (accumulator + n), which initialise the accumulator variable to default value 0 and adds up the element for each key and return the result rdd counts having the total counts paired with key.
Simple if your input RDD data look like this:
(aa,1)
(bb,1)
(aa,1)
(cc,1)
(bb,1)
and if you apply reduceByKey on above rdd data then few you have to remember,
reduceByKey always takes 2 input (x,y) and always works with two rows at a time.
As it is reduceByKey it will combine two rows of same key and combine the result of value.
val rdd2 = rdd.reduceByKey((x,y) => x+y)
rdd2.foreach(println)
output:
(aa,2)
(bb,2)
(cc,1)