imshow(A, 2) : Invalid IMSHOW syntax - matlab

I'm new in image processing with matlab, when i wrote this code :
A = [0 0 1 0 0; 0 1 1 1 0; 1 1 1 1 1; 0 1 1 1 0; 0 0 1 0 0];
B = [A A A A A; A A A A A; A A A A A; A A A A A; A A A A A];
imshow(A, 2)
imshow(B, 2)
I got this error :
Error using imshow>preParseInputs (line 439)
Invalid IMSHOW syntax.
Error in imshow (line 214)
varargin_translated = preParseInputs(varargin{:});

The function imshow() is not deprecated at all and it does take a double matrix as a first input. However, the second input (the colormap) cannot be a scalar, it must be a matrix with 3 columns where each row specifies an RGB color value. By doing
A = [0 0 1 0 0; 0 1 1 1 0; 1 1 1 1 1; 0 1 1 1 0; 0 0 1 0 0];
imshow(A,[1 1 1])
a small all-white picture appears. It is up to you, now, to adjust the colormap that better suits your goals.

Related

How to permute elements of a vector by another vector to obtain a matrix of permutations

I want to obtain all the possible permutations of one vector elements by another vector elements. For example one vector is A=[0 0 0 0] and another is B=[1 1]. I want to replace the elements of A by B to obtain all the permutations in a matrix like this [1 1 0 0; 1 0 1 0; 1 0 0 1; 0 1 1 0; 0 1 0 1; 0 0 1 1]. The length of real A is big and I should be able to choose the length of B_max and to obtain all the permutations of A with B=[1], [1 1], [1 1 1],..., B_max.
Thanks a lot
Actually, since A and B are always defined, respectively, as a vector of zeros and a vector of ones, this computation is much easier than you may think. The only constraints you should respect concerns B, which shoud not be empty and it's elements cannot be greater than or equal to the number of elements in A... because after that threshold A will become a vector of ones and calculating its permutations will be just a waste of CPU cycles.
Here is the core function of the script, which undertakes the creation of the unique permutations of 0 and 1 given the target vector X:
function p = uperms(X)
n = numel(X);
k = sum(X);
c = nchoosek(1:n,k);
m = size(c,1);
p = zeros(m,n);
p(repmat((1-m:0)',1,k) + m*c) = 1;
end
And here is the full code:
clear();
clc();
% Define the main parameter: the number of elements in A...
A_len = 4;
% Compute the elements of B accordingly...
B_len = A_len - 1;
B_seq = 1:B_len;
% Compute the possible mixtures of A and B...
X = tril(ones(A_len));
X = X(B_seq,:);
% Compute the unique permutations...
p = [];
for i = B_seq
p = [p; uperms(X(i,:).')];
end
Output for A_len = 4:
p =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

Perform "outer product" of 2-D matrix and return a 3-D array in MATLAB

I would like to do an operation on a 2-D matrix which somehow looks like the outer product of a vector. I already have written some codes for this task, but it is pretty slow, so I would like to know if there is anything I can do to accelerate it.
I would like to show the code I wrote first, followed by an example to illustrate the task I wanted to do.
My code, version row-by-row
function B = outer2D(A)
B = zeros(size(A,1),size(A,2),size(A,2)); %Pre-allocate the output array
for J = 1 : size(A,1)
B(J,:,:) = transpose(A(J,:))*A(J,:); %Perform outer product on each row of A and assign to the J-th layer of B
end
end
Using the matrix A = randn(30000,20) as the input for testing, it spends 0.317 sec.
My code, version page-by-page
function B = outer2D(A)
B = zeros(size(A,1),size(A,2),size(A,2)); %Pre-allocate the output array
for J = 1 : size(A,2)
B(:,:,J) = repmat(A(:,J),1,size(A,2)).*A; %Evaluate B page-by-page
end
end
Using the matrix A = randn(30000,20) as the input for testing, it spends 0.146 sec.
Example 1
A = [3 0; 1 1; 1 0; -1 1; 0 -2]; %A is the input matrix.
B = outer2D(A);
disp(B)
Then I would expect
(:,:,1) =
9 0
1 1
1 0
1 -1
0 0
(:,:,2) =
0 0
1 1
0 0
-1 1
0 4
The first row of B, [9 0; 0 0], is the outer product of [3 0],
i.e. [3; 0]*[3 0] = [9 0; 0 0].
The second row of B, [1 1; 1 1], is the outer product of [1 1],
i.e. [1; 1]*[1 1] = [1 1; 1 1].
The third row of B, [1 0; 0 0], is the outer product of [1 0],
i.e. [1; 0]*[1 0] = [1 0; 0 0].
And the same for the remaining rows.
Example 2
A =
0 -1 -2
0 1 0
-3 0 2
0 0 0
1 0 0
B = outer2D(A)
disp(B)
Then, similar to the example 1, the expected output is
(:,:,1) =
0 0 0
0 0 0
9 0 -6
0 0 0
1 0 0
(:,:,2) =
0 1 2
0 1 0
0 0 0
0 0 0
0 0 0
(:,:,3) =
0 2 4
0 0 0
-6 0 4
0 0 0
0 0 0
Because the real input in my project is like in the size of 30000 × 2000 and this task is to be performed for many times. So the acceleration of this task is quite essential for me.
I am thinking of eliminating the for-loop in the function. May I have some opinions on this problem?
With auto expansion:
function B = outer2D(A)
B=permute(permute(A,[3 1 2]).*A',[2 3 1]);
end
Without auto expansion:
function B = outer2Dold(A)
B=permute(bsxfun(#times,permute(A,[3 1 2]),A'),[2 3 1]);
end
Outer products are not possible in the matlab language.

Iteratively and randomly adding ones to a binary vector in matlab

In each iteration I want to add 1 randomly to binary vector,
Let say
iteration = 1,
k = [0 0 0 0 0 0 0 0 0 0]
iteration = 2,
k = [0 0 0 0 1 0 0 0 0 0]
iteration = 3,
k = [0 0 1 0 0 0 0 1 0 0]
, that goes up to length(find(k)) = 5;
Am thinking of for loop but I don't have an idea how to start.
If it's important to have the intermediate vectors (those with 1, 2, ... 4 ones) as well as the final one, you can generate a random permutation and, in your example, use the first 5 indices one at a time:
n = 9; %// number of elements in vector
m = 5; %// max number of 1's in vector
k = zeros(1, n);
disp(k); %// output vector of all 0's
idx = randperm(n);
for p = 1:m
k(idx(p)) = 1;
disp(k);
end
Here's a sample run:
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 1
1 0 0 1 1 0 0 0 1
1 1 0 1 1 0 0 0 1
I wouldn't even use a loop. I would generate a random permutation of indices that sample from a vector going from 1 up to the length of k without replacement then just set these locations to 1. randperm suits the task well:
N = 10; %// Length 10 vector
num_vals = 5; %// 5 values to populate
ind = randperm(N, num_vals); %// Generate a vector from 1 to N and sample num_vals values from this vector
k = zeros(1, N); %// Initialize output vector k to zero
k(ind) = 1; %// Set the right values to 1
Here are some sample runs when I run this code a few times:
k =
0 0 1 1 0 1 1 0 0 1
k =
1 0 0 0 1 0 1 1 0 1
k =
1 0 0 0 1 0 1 1 0 1
k =
0 1 1 1 0 0 1 0 0 1
However, if you insist on using a loop, you can generate a vector from 1 up to the desired length, randomly choose an index in this vector then remove this value from the vector. You'd then use this index to set the location of the output:
N = 10; %// Length 10 vector
num_vals = 5; %// 5 values to populate
vec = 1 : N; %// Generate vector from 1 up to N
k = zeros(1, N); %// Initialize output k
%// Repeat the following for as many times as num_vals
for idx = 1 : num_vals
%// Obtain a value from the vector
ind = vec(randi(numel(vec), 1));
%// Remove from the vector
vec(ind) = [];
%// Set location in output to 1
k(ind) = 1;
end
The above code should still give you the desired effect, but I would argue that it's less efficient.

How to sum the 8-neighbor pixel values of the current pixel.

I have a binary image. I want to find the pixel value = 1 and label it as the current pixel. Then, I want to sum its 8-neighbor pixel values. If the summation of the 8-neighbor pixel values of the current pixel = 1, then mark that current pixel with marker. Some part of a binary image as follows:
0 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0
I tried the following matlab code but it has some errors (at this line -> Sums = sum(currentPix, nOffsets);). How can I fix it?
Sums = 0;
S = size(BW,1);
nOffsets = [S, S+1, 1, -S+1, -S, -S-1, -1, S-1]'; %8-neighbors offsets
BW_Out = BW;
for row=1:S
for col=1:S
if BW(row,col),
break;
end
end
idx = sub2ind(size(BW),row,col);
neighbors = bsxfun(#plus, idx, nOffsets);
currentPix = find(BW==1); %if found 1, define it as current pixel
while ~isempty(currentPix)
% new current pixel list is set of neighbors of current list.
currentPix = bsxfun(#plus, currentPix, nOffsets);
currentPix = currentPix(:);
Sums = sum(currentPix, nOffsets); %error at this line
if (Sums==1) %if the sum of 8-neighbor values = 1, mark ROI
plot(currentPix,'r*','LineWidth',1);
end
% Remove from the current pixel list pixels that are already
currentPix(BW_Out(currentPix)) = [];
% Remove duplicates from the list.
currentPix = unique(currentPix);
end
end
I think you can actually do this in one line (after defining a kernel that is)
I = [0 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0];
K = [1 1 1;
1 0 1;
1 1 1;];
(conv2(I,K,'same')==1) & I
ans =
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
Breaking this up:
M = conv2(I,K, 'same'); %// convolving with this specific kernel sums up the 8 neighbours excluding the central element (i.e. the 0 in the middle)
(M==1) & I %// Only take results where there was a 1 in the original image.

Is there any function in MATLAB for changing the form of a matrix?

I have to get the unknown matrix by changing the form of a known matrix considering the following rules:
H = [-P'|I] %'
G = [I|P]
where
H is a known matrix
G is an unknown matrix which has to be calculated
I is the identity matrix
So for example, if we had a matrix,
H = [1 1 1 1 0 0;
0 0 1 1 0 1;
1 0 0 1 1 0]
its form has to be changed to
H = [1 1 1 1 0 0;
0 1 1 0 1 0;
1 1 0 0 0 1]
So
-P' = [1 1 1;
0 1 0;
1 1 0]
and in case of binary matrices -P = P.
Therefore
G = [1 0 0 1 1 1;
0 1 0 0 1 0;
0 0 1 1 1 0]
I know how to solve it on paper by performing basic row operations but haven't figured out how to solve it using MATLAB yet.
What is the method for solving the given problem?
If the order of columns in -P' doesn't matter, here's one solution using the function ISMEMBER:
>> H = [1 1 1 1 0 0; 0 0 1 1 0 1; 1 0 0 1 1 0]; %# From above
>> pColumns = ~ismember(H',eye(3),'rows') %'# Find indices of columns that
%# are not equal to rows
pColumns = %# of the identity matrix
1
0
1
1
0
0
>> P = -H(:,pColumns)' %'# Find P
P =
-1 0 -1
-1 -1 0
-1 -1 -1
>> G = logical([eye(3) P]) %# Create the binary matrix G
G =
1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 1 1 1
NOTE: This solution will work properly for integer or binary values in H. If H has floating-point values, you will likely run into an issue with floating-point comparisons when using ISMEMBER (see here and here for more discussion of this issue).