Setting up a matrix of time and space for a function - matlab

I'm writing a program in matlab to observe how a function evolves in time. I'd like to set up a matrix that fills its first row with the initial function, and progressively fills more rows based off of a time derivative (that's dependent on the spatial derivative). The function is arbitrary, the program just needs to 'evolve' it. This is what I have so far:
xleft = -10;
xright = 10;
xsampling = 1000;
tmax = 1000;
tsampling = 1000;
dt = tmax/tsampling;
x = linspace(xleft,xright,xsampling);
t = linspace(0,tmax,tsampling);
funset = [exp(-(x.^2)/100);cos(x)]; %Test functions.
funsetvel = zeros(size(funset)); %The functions velocities.
spacetimevalue1 = zeros(length(x), length(t));
spacetimevalue2 = zeros(length(x), length(t));
% Loop that fills the first functions spacetime matrix.
for j=1:length(t)
funsetvel(1,j) = diff(funset(1,:),x,2);
spacetimevalue1(:,j) = funsetvel(1,j)*dt + funset(1,j);
end
This outputs the error, Difference order N must be a positive integer scalar. I'm unsure what this means. I'm fairly new to Matlab. I will exchange the Euler-method for another algorithm once I can actually get some output along the proper expectation. Aside from the error associated with taking the spatial derivative, do you all have any suggestions on how to evaluate this sort of process? Thank you.

Related

Matlab Vectorization - Time evolution of a matrix

I have tried searching for an answer on this, but can't find one that specifically addresses my issue. Although vectorizing in MATLAB must draw many questions in, the problem I am having is less general than typical examples I have found on the web. My background is more in C++ than MATLAB, so this is an odd concept for me to get my head around.
I am trying to evolve a Hamiltonian matrix from it's initial state (being a column vector where all elements but the last is a 0, and the last is a 1) to a final state as time increases. This is achieved by sequentially applying a time evolution operator U to the state. I also want to use the new state at each time interval to calculate an observable property.
I have achieved this, as can be seen in the code below. However, I need to make this code as efficient as possible, and so I was hoping to vectorize, rather than rely on for loops. However, I am unsure of how to vectorize this code. The problem I have is that on each iteration of the for loop, the column vector psi should change its values. Each new psi is then used to calculate my observable M for each interval of time. I am unsure of how to track the evolution of psi such that I can end up with a row vector for M, giving the outcome of the application of each new psi.
time = tmin:dt:tmax;
H = magic(2^N)
X = [0,1;1,0]
%%% INITIALISE COLUMN VECTOR
init = sparse(2^N,1);
init(2^N) = 1;
%%% UNITARY TIME EVOLUTION OPERATOR
U = expm(-1i*H*dt);
%%% TIME EVOLVUTION
for num = 1:length(time)
psi = U*init;
init = psi;
%%% CALCULATE OBSERVABLE
M(num) = psi' * kron(X,speye(2^(N-1))) * psi
end
Any help would be greatly appreciated.
I have quickly come up with the following partially vectorized code:
time = tmin:dt:tmax;
H = magic(2^N);
X = [0,1;1,0];
%%% INITIALISE COLUMN VECTOR
init = sparse(2^N,1);
init(2^N) = 1;
%%% UNITARY TIME EVOLUTION OPERATOR
U = expm(-1i*H*dt);
%%% TIME EVOLVUTION
% preallocate psi
psi = complex(zeros(2^N, length(time)));
% compute psi for all timesteps
psi(:,1) = U*init;
for num = 2:length(time)
psi(:,num) = U*psi(:, num-1);
end
% precompute kronecker product (if X is constant through time)
F = kron(X,speye(2^(N-1)));
%%% CALCULATE OBSERVABLE
M = sum((psi' * F) .* psi.', 2);
However, it seems that the most computationally intensive part of your problem is computation of the psi. For that I can't see any obvious way to vectorize as it depends on the value computed in the previous step.
This line:
M = sum((psi' * F) .* psi.', 2);
is a little Matlab trick to compute psi(:,i)'*F*psi(:,i) in a vectorized way.

Something's wrong with my Logistic Regression?

I'm trying to verify if my implementation of Logistic Regression in Matlab is good. I'm doing so by comparing the results I get via my implementation with the results given by the built-in function mnrfit.
The dataset D,Y that I have is such that each row of D is an observation in R^2 and the labels in Y are either 0 or 1. Thus, D is a matrix of size (n,2), and Y is a vector of size (n,1)
Here's how I do my implementation:
I first normalize my data and augment it to include the offset :
d = 2; %dimension of data
M = mean(D) ;
centered = D-repmat(M,n,1) ;
devs = sqrt(sum(centered.^2)) ;
normalized = centered./repmat(devs,n,1) ;
X = [normalized,ones(n,1)];
I will be doing my calculations on X.
Second, I define the gradient and hessian of the likelihood of Y|X:
function grad = gradient(w)
grad = zeros(1,d+1) ;
for i=1:n
grad = grad + (Y(i)-sigma(w'*X(i,:)'))*X(i,:) ;
end
end
function hess = hessian(w)
hess = zeros(d+1,d+1) ;
for i=1:n
hess = hess - sigma(w'*X(i,:)')*sigma(-w'*X(i,:)')*X(i,:)'*X(i,:) ;
end
end
with sigma being a Matlab function encoding the sigmoid function z-->1/(1+exp(-z)).
Third, I run the Newton algorithm on gradient to find the roots of the gradient of the likelihood. I implemented it myself. It behaves as expected as the norm of the difference between the iterates goes to 0. I wrote it based on this script.
I verified that the gradient at the wOPT returned by my Newton implementation is null:
gradient(wOP)
ans =
1.0e-15 *
0.0139 -0.0021 0.2290
and that the hessian has strictly negative eigenvalues
eig(hessian(wOPT))
ans =
-7.5459
-0.0027
-0.0194
Here's the wOPT I get with my implementation:
wOPT =
-110.8873
28.9114
1.3706
the offset being the last element. In order to plot the decision line, I should convert the slope wOPT(1:2) using M and devs. So I set :
my_offset = wOPT(end);
my_slope = wOPT(1:d)'.*devs + M ;
and I get:
my_slope =
1.0e+03 *
-7.2109 0.8166
my_offset =
1.3706
Now, when I run B=mnrfit(D,Y+1), I get
B =
-1.3496
1.7052
-1.0238
The offset is stored in B(1).
I get very different values. I would like to know what I am doing wrong. I have some doubt about the normalization and 'un-normalization' process. But I'm not sure, may be I'm doing something else wrong.
Additional Info
When I tape :
B=mnrfit(normalized,Y+1)
I get
-1.3706
110.8873
-28.9114
which is a rearranged version of the opposite of my wOPT. It contains exactly the same elements.
It seems likely that my scaling back of the learnt parameters is wrong. Otherwise, it would have given the same as B=mnrfit(D,Y+1)

separate 'entangled' vectors in Matlab

I have a set of three vectors (stored into a 3xN matrix) which are 'entangled' (e.g. some value in the second row should be in the third row and vice versa). This 'entanglement' is based on looking at the figure in which alpha2 is plotted. To separate the vector I use a difference based approach where I calculate the difference of one value with respect the three next values (e.g. comparing (1,i) with (:,i+1)). Then I take the minimum and store that. The method works to separate two of the three vectors, but not for the last.
I was wondering if you guys can share your ideas with me how to solve this problem (if possible). I have added my coded below.
Thanks in advance!
Problem in figures:
clear all; close all; clc;
%%
alpha2 = [-23.32 -23.05 -22.24 -20.91 -19.06 -16.70 -13.83 -10.49 -6.70;
-0.46 -0.33 0.19 2.38 5.44 9.36 14.15 19.80 26.32;
-1.58 -1.13 0.06 0.70 1.61 2.78 4.23 5.99 8.09];
%%% Original
figure()
hold on
plot(alpha2(1,:))
plot(alpha2(2,:))
plot(alpha2(3,:))
%%% Store start values
store1(1,1) = alpha2(1,1);
store2(1,1) = alpha2(2,1);
store3(1,1) = alpha2(3,1);
for i=1:size(alpha2,2)-1
for j=1:size(alpha2,1)
Alpha1(j,i) = abs(store1(1,i)-alpha2(j,i+1));
Alpha2(j,i) = abs(store2(1,i)-alpha2(j,i+1));
Alpha3(j,i) = abs(store3(1,i)-alpha2(j,i+1));
[~, I] = min(Alpha1(:,i));
store1(1,i+1) = alpha2(I,i+1);
[~, I] = min(Alpha2(:,i));
store2(1,i+1) = alpha2(I,i+1);
[~, I] = min(Alpha3(:,i));
store3(1,i+1) = alpha2(I,i+1);
end
end
%%% Plot to see if separation worked
figure()
hold on
plot(store1)
plot(store2)
plot(store3)
Solution using extrapolation via polyfit:
The idea is pretty simple: Iterate over all positions i and use polyfit to fit polynomials of degree d to the d+1 values from F(:,i-(d+1)) up to F(:,i). Use those polynomials to extrapolate the function values F(:,i+1). Then compute the permutation of the real values F(:,i+1) that fits those extrapolations best. This should work quite well, if there are only a few functions involved. There is certainly some room for improvement, but for your simple setting it should suffice.
function F = untangle(F, maxExtrapolationDegree)
%// UNTANGLE(F) untangles the functions F(i,:) via extrapolation.
if nargin<2
maxExtrapolationDegree = 4;
end
extrapolate = #(f) polyval(polyfit(1:length(f),f,length(f)-1),length(f)+1);
extrapolateAll = #(F) cellfun(extrapolate, num2cell(F,2));
fitCriterion = #(X,Y) norm(X(:)-Y(:),1);
nFuncs = size(F,1);
nPoints = size(F,2);
swaps = perms(1:nFuncs);
errorOfFit = zeros(1,size(swaps,1));
for i = 1:nPoints-1
nextValues = extrapolateAll(F(:,max(1,i-(maxExtrapolationDegree+1)):i));
for j = 1:size(swaps,1)
errorOfFit(j) = fitCriterion(nextValues, F(swaps(j,:),i+1));
end
[~,j_bestSwap] = min(errorOfFit);
F(:,i+1) = F(swaps(j_bestSwap,:),i+1);
end
Initial solution: (not that pretty - Skip this part)
This is a similar solution that tries to minimize the sum of the derivatives up to some degree of the vector valued function F = #(j) alpha2(:,j). It does so by stepping through the positions i and checks all possible permutations of the coordinates of i to get a minimal seminorm of the function F(1:i).
(I'm actually wondering right now if there is any canonical mathematical way to define the seminorm so we get our expected results... I initially was going for the H^1 and H^2 seminorms, but they didn't quite work...)
function F = untangle(F)
nFuncs = size(F,1);
nPoints = size(F,2);
seminorm = #(x,i) sum(sum(abs(diff(x(:,1:i),1,2)))) + ...
sum(sum(abs(diff(x(:,1:i),2,2)))) + ...
sum(sum(abs(diff(x(:,1:i),3,2)))) + ...
sum(sum(abs(diff(x(:,1:i),4,2))));
doSwap = #(x,swap,i) [x(:,1:i-1), x(swap,i:end)];
swaps = perms(1:nFuncs);
normOfSwap = zeros(1,size(swaps,1));
for i = 2:nPoints
for j = 1:size(swaps,1)
normOfSwap(j) = seminorm(doSwap(F,swaps(j,:),i),i);
end
[~,j_bestSwap] = min(normOfSwap);
F = doSwap(F,swaps(j_bestSwap,:),i);
end
Usage:
The command alpha2 = untangle(alpha2); will untangle your functions:
It should even work for more complicated data, like these shuffled sine-waves:
nPoints = 100;
nFuncs = 5;
t = linspace(0, 2*pi, nPoints);
F = bsxfun(#(a,b) sin(a*b), (1:nFuncs).', t);
for i = 1:nPoints
F(:,i) = F(randperm(nFuncs),i);
end
Remark: I guess if you already know that your functions will be quadratic or some other special form, RANSAC would be a better idea for larger number of functions. This could also be useful if the functions are not given with the same x-value spacing.

Writing a matlab program for combinations of large numbers

Because for combinations of large numbers at times matlab replies NaN, the assignment is to write a program to compute combinations of 200 objects taken 90 at a time. Once this works we are to make it into a function y = comb(n,k).
This is what I have so far based on an example we were given of the probability that 2 people in a class have the same birthday.
This is the example:
nMax = 70; %maximum number of people in classroom
nArray = 1:nMax;
prevPnot = 1; %initialize probability
for iN = 1:nMax
Pnot = prevPnot*(365-iN+1)/365; %probability that no birthdays are the same
P(iN) = 1-Pnot; %probability that at least two birthdays are the same
prevPnot = Pnot;
end
plot(nArray, P, '.-')
xlabel('nb. of people')
ylabel('prob. that at least two have same birthday')
grid on
At this point I'm having trouble because I'm more familiar with java. This is what I have so far, and it isn't coming out at all.
k = 90;
n = 200;
nArray = 1:k;
prevPnot = 1;
for counter = 1:k
Pnot = (n-counter+1)/(prevPnot*(n-k-counter+1);
P(iN) = Pnot;
prevPnot = Pnot;
end
The point of the loop I wrote is to separate out each term
i.e. n/k*(n-k), times (n-counter)/(k-counter)*(n-k-counter), and so forth.
I'm also not entirely sure how to save a loop as a function in matlab.
To compute the number of combinations of n objects taken k at a time, you can use gammaln to compute the logarithm of the factorials in order to avoid overflow:
result = exp(gammaln(n+1)-gammaln(k+1)-gammaln(n-k+1));
Another approach is to remove terms that will cancel and then compute the result:
result = prod((n-k+1:n)./(1:k));

Non Local Means Filter Optimization in MATLAB

I'm trying to write a Non-Local Means filter for an assignment. I've written the code in two ways, but the method I'd expect to be quicker is much slower than the other method.
Method 1: (This method is slower)
for i = 1:size(I,1)
tic
sprintf('%d/%d',i,size(I,1))
for j = 1:size(I,2)
w = exp((-abs(I-I(i,j))^2)/(h^2));
Z = sum(sum(w));
w = w/Z;
sumV = w .* I;
NL(i,j) = sum(sum(sumV));
end
toc
end
Method 2: (This method is faster)
for i = 1:size(I,1)
tic
sprintf('%d/%d',i,size(I,1))
for j = 1:size(I,2)
Z = 0;
for k = 1:size(I,1)
for l = 1:size(I,2)
w = exp((-abs(I(i,j)-I(k,l))^2)/(h^2));
Z = Z + w;
end
end
sumV = 0;
for k = 1:size(I,1)
for l = 1:size(I,2)
w = exp((-abs(I(i,j)-I(k,l))^2)/(h^2));
w = w/Z;
sumV = sumV + w * I(k,l);
end
end
NL(i,j) = sumV;
end
toc
end
I really thought that MATLAB would be optimized for Matrix operations. Is there reason it isn't in this code? The difference is pretty large. For a 512x512 image, with h = 0.05, one iteration of the outer loop takes 24-28 seconds for Method 1 and 10-12 seconds for Method 2.
The two methods are not doing the same thing. In Method 2, the term abs(I(i,j)-I(k,l)) in the w= expression is being squared, which is fine because the term is just a single numeric value.
However, in Method 1, the term abs(I-I(i,j)) is actually a matrix (The numeric value I(i,j) is being subtracted from every element in the matrix I, returning a matrix again). So, when this term is squared with the ^ operator, matrix multiplication is happening. My guess, based on Method 2, is that this is not what you intended. If instead, you want to square each element in that matrix, then use the .^ operator, as in abs(I-I(i,j)).^2
Matrix multiplication is a much more computation intensive operation, which is likely why Method 1 takes so much longer.
My guess is that you have not preassigned NL, that both methods are in the same function (or are scripts and you didn't clear NL between function runs). This would have slowed the first method by quite a bit.
Try the following: Create a function for both methods. Run each method once. Then use the profiler to see where each function spends most of its time.
A much faster implementation (Vectorized) could be achieved using im2col:
Create a Vector out of each neighborhood.
Using predefined indices calculate the distance between each patch.
Sum over the values and the weights using sum function.
This method will work with no loop at all.