Adjacent irregularly shaped images - swift

Is it possible to have irregularly shaped images positioned adjacent to each other, where each individual image is clickable within its own boundaries?
For example, if I had a map of the US and I want to click each state and have a separate segue for each:
(https://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Map_of_USA_with_state_names.svg/2000px-Map_of_USA_with_state_names.svg.png)
I appreciate any tips/pointers in the right direction. Thanks!

Whether the map is really a bunch of irregularly shaped images, or just one image, is immaterial. (The latter will be easier.) You can just define a separate UIBezierPath objects that outline each of the states, and then you can use the UIBezierPath method containsPoint to determine whether some tap point is contained within the respective state.
Frankly, you might consider how much accuracy you really need. For example, if looking at map of US from continental scale, you really don't need extremely accurate bezier paths. Often a simple irregular polygon shape can approximate the boundaries and is more than sufficient for hit tests.
In fact, you sometimes deliberately use a much bigger bezier path. For example, you might draw a single path that goes around all of the Hawaiian islands, with some leeway, so that you don't have to tap right on the actual island, but just somewhere close. Or, for Rhode Island, you might allow a tap on the text "Rhode Island", as well as the state itself.

Related

Make symbol layer icon-size zoom invariant

I am attempting to place a hexagon (centred over co-ordinates) which I can interact with, hover/onclick. The method I am using is to LoadImage(..._Hexagon.png) and then addLayer. Eventually the idea is to have many hexagons over specific areas.
I have obtained the desired interaction with the shape, but I would like this layer to be invariant under zoom (ie I have the hexagons cover an area of x square km at all times regardless of zoom). Is there an efficient way to do this? Will another method be better? etc
Thank you in advance for any and all advice!
If you really want to scale an icon such that it gets bigger as you zoom in, you can use an exponential scale:
"icon-scale": ["*", ["interpolate", ["exponential", 2], ["zoom"]], SCALE]
where SCALE is some constant you pick.
It probably makes more sense to actually generate hexagonal polygon data (eg, using Turf), and displaying that though.

Identify different shapes drawn using UIBezierPath?

I am able to draw shapes using the UIBezierPath object. Now I want to identify different shapes drawn using this eg. Rectangle , Square , Triangle , Circle etc. Then next thing I want to do is that user should be able to select a particular shape and should be able to move the whole shape to different location on the screen. The actual requirement is even more complex , but If I could make this much then I can work out on the rest.
Any suggestion or links or points on how do I start with this is welcome . I am thinking of writing a separate view to handle every shape but not getting how do I do that..
Thank You all in advance !!
I recommend David Gelphman’s Programming with Quartz.
In his chapter “Drawing with Paths” he has a section on “Path Construction Primitives” which provides a crossroads:
If you use CGContextAddLineToPoint your user could make straight lines defined by known Cartesian points. You would use basic math to deduce the geometric shapes defined by those points.
If you use CGContextAddCurveToPoint your user could make curved lines defined by known points, and I’m pretty sure that those lines would run through the points, so you could still use basic math to determine at least an approximation of the types of shapes formed.
But if you use CGContextAddQuadCurveToPoint, the points define a framework outside of the drawn curve. You’d need more advanced math to determine the shapes formed by curves along tangents.
Gelphman also discusses “Path Utility Functions,” like getting a bounding box and checking whether a given point is inside the path.
As for moving the completed paths, I think you would use CGContextTranslateCTM.

Matlab: Track point on object in video

I would like to track (if that is the right word for this) the movement of a point on an object and return the co-ordinates for the point in each frame to arrays for plotting. How would you go about doing this?
The point on the video is a certain color and so my first effort was to eliminate all other colors and change the part I wish to follow to black and everything else to white. Doing this left me with some areas in the background which are the same color but I wish to ignore them and just focus on the moving point. I do not know where to even begin with this or if I've even been trying to do the right thing so far?
Any help would be greatly appreciated! :)
Try searching for terms like 'tracking', 'morphological', 'computer vision', 'matlab'
Here's a project that I found that will probably get you started.
http://www.mathworks.com/matlabcentral/fileexchange/28757-tracking-red-color-objects-using-matlab
if your object of interests is of a certain specific color. You can always apply a color-filter. To give you a bit of a background, i was trying to track not a point on an object, but a moving object in one of the videos i have. (it was a ping-pong video and my goal was to track the ping-pong ball). My algorithm was simple and fast (as i did not want any of my filters to induce heavy computations at one single frame). The basic idea was to apply a color filter. Similar to other shape filters, if your target is of high similarity to the filter, the response will be distinctive enough for you to notice. In other words, if you minus two objects that are extremely similar, you will get 0, otherwise, it will be far greater than 0.

what is better: one big sprite or many small

I'm new to game programming. And i have a question. I want to have a dotted circle to be drawn on the screen. I can use one big sprite (for example 256x256 pixels) which contains all the circle or i can use many small sprites representing dots.
I use cocos2d libs and i'm able to render using batch. So what is the best way to perform such tasks ?
In my opinion your best bet (if all the dots are the same) is to have one sprite of the dot, and repeat it in the shape you are looking for.
Generally you'll want a single asset for each unique graphic. You can combine those assets into a single sprite and reuse them. This allows for more flexibility as well as speed.
Most of todays graphics hardware is optimized to texture dimensions that are a power of two. Your sprites are likely to have other dimensions. By using sprites, you can minimize the padding that is needed to fill this space (and thus, minimize CPU/GPU cycles spent on correcting this internally). Besides that, the file size will be smaller, since you need less overhead and compression is likely to be more effective.
Go with one large sprite. It's fewer calls into the rendering engine, and adds flexibility to change the look (for example, if you decide to have the circle made of dashed lines rather than dots).

How to determine if iPad user taps within an irregular shaped image?

I've hooked up a UITapGestureRecognizer to a UIImageView containing the image I'd like to display on an iPad screen and am able to consume the user taps just fine. However, my image is that of a hand on a table and I'd like to know if the user has tapped on the hand or on the table part of the image. I can get the x,y coordinates of the user tap with CGPoint tapLocation = [recognizer locationInView:self.view]; but I'm at a loss for how to map that CGPoint to, say, the region of the image that contains the hand vs. the region that contains the table. Everything I've read so far deals with determining if a CGPoint is in a particular rectangular area, but what if you need to determine if that CGPoint is located in the boundaries of a more irregular shape? Is that even possible? Any suggestions or just pointing me in the right direction would be a big help. Thanks!
You could use pointInside:withEvent: to define the hit area programmatically.
To elaborate, you just take the point and evaluate to see if it falls in the area you're after with a series of if statements. If it does, return TRUE. If it doesn't, return FALSE. If this is related to this post, then you could use a circular conditional to compare the distance of the point to the center of your circle using Pythagorean Theorem.
late to the party,
but the core tool you want here is a "point in polygon" routine.
this is a generic approach, independent of iOS.
google has lots of info,
but the general approach is:
1) define your closed polygon.
- it sounds like this might be a bit of work in your case.
2) choose any point not equal to your original point.
(yes, any point)
3) for each edge in the polygon,
determine if the ray from your original point through the seconds point intersects with that polygon edge.
- this requires a line-segment-intersect-ray routine, also available on the 'tubes.
4) if the number of intersections is odd, it's inside the polygon.
if the count is even, it's outside.
for general geometry-type issues,
i highly recommend Paul Bourke: http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
You can use a bounding rectangle that covers most or all of the hand.
If the user is using his finger to tap either the hand or the table, I doubt that you want him or her to be extremely precise with the tap.
An extension of the bounding rectangle answer,
you could define several smaller bounding rectangles that would approximate a hand without covering the rest of the screen.
OR
you could use a list of rectangles, for each of your objects and put the hand at the end of the list. In this case, if you had a tap on button X on the top right hand of the screen which is technically inside the hand rectangle, it would choose the button X because that rectangle is found first.
define the shape by a black and white bitmap (1 bit per pixel). Check if the particular bit is set. This would eat a lot of memory if you had a lot of large shapes, but for one bitmap with a hand, it should not be a big deal.
define the shape as a polygon. Then you need to do point-in-polygon test. Wikipedia has a wonderful article on this, with links to code here: http://en.wikipedia.org/wiki/Point_in_polygon
iPad libraries might have this already implemented. Sorry, I cannot help you there, not an iPad developer.