Total number of jobs in a Spark App - scala

I already saw this question How to implement custom job listener/tracker in Spark? and checked the source code to find out how to get the number of stages per job but is there any way to track programatically the % of jobs that got completed in a Spark app?
I can probably get the number of finished jobs with the listeners but I'm missing the total number of jobs that will be run.
I want to track progress of the whole app and it creates quite a few jobs but I can't find to find it anywhere.
#Edit: I know there's a REST endpoint for getting all the jobs in an app but:
I would prefer not to use REST but to get it in the app itself (spark running on AWS EMR/Yarn - getting the address probably is doable but I'd prefer to not do it)
that REST endpoint seems to be returning only jobs that are running/finished/failed so not total number of jobs.

After going through the source code a bit I guess there's no way to see upfront how many jobs will there be since I couldn't find any place where Spark would be doing such analysis upfront (as jobs are submitted in each action independently Spark doesn't have a big picture of all the jobs from the start).
This kind of makes sense because of how Spark divides work into:
jobs - which are started whenever the code which is run on the driver node encounters an action (i.e. collect(), take() etc.) and are supposed to compute a value and return it to the driver
stages - which are composed of sequences of tasks between which no data shuffling is required
tasks - computations of the same type which can run in parallel on worker nodes
So we do need to know stages and tasks upfront for a single job to create the DAG but we don't necessarily need to create a DAG of jobs, we can just create them "as we go".

Related

Understanding compute acquisition times across pipelines

I am struggling to optimize my data factory pipeline to achieve as little time spent in spinning up compute for dataflows.
My understanding is that if we set up a runtime with a TTL of say 15 minutes, then all subsequent flows executed in a sequence following this should experience very short compute acquisition times, but does this also hold true, when switching from one pipeline to the other - in the image below, would flow 3 utilize that the runtime was already spun up in flow 1? I ask because I see very sporadic behavior.
Pipeline example
If you are using the same Azure IR inside of the same factory, yes. However, the activities must be executed sequentially, otherwise, ADF will spin-up another pool for you. That's because Databricks parallel job executions are not supported in job clusters. I describe the techniques in this video and in this document.

Spark: How to debug/log a task at specific index

I have one process that stucks at the same point. The information that I know is the Task's index at the Details pages (referring to the Dashboard UI).
How can I debug/log exactly that task at specific index?
Based on then answer in:
How to get ID of a map task in Spark?
I can see how to get task info. But what are the IDs in the UI dashboard referred to in that object?
is ID = org.apache.spark.scheduler.TaskInfo.id and Index = org.apache.spark.schedulerTaskInfo.partionId ?
The IDs in the dashboard refers to partitions in spark. Whenever a job is launched, your input data is partitioned and depending on the number of partitions, you'll have them mapped to task IDs.
It's not a trivial task to debug spark jobs as they're map reduce tasks of your data done by your algorithm. It's fairly easy though, to add logs to debug your job after the fact. The logs would have to be collected on the workers, or in each of the executor's working directory.

Apache Spark - How does internal job scheduler in spark define what are users and what are pools

I am sorry about being a little general here, but I am a little confused about how job scheduling works internally in spark. From the documentation here I get that it is some sort of implementation of Hadoop Fair Scheduler.
I am unable to come around to understand that who exactly are users here (are the linux users, hadoop users, spark clients?). I am also unable to understand how are the pools defined here. For example, In my hadoop cluster I have given resource allocation to two different pools (lets call them team 1 and team 2). But in spark cluster, wont different pools and the users in them instantiate their own spark context? Which again brings me to question that what parameters do I pass when I am setting property to spark.scheduler.pool.
I have a basic understanding of how driver instantiates a spark context and then splits them into task and jobs. May be I am missing the point completely here but I would really like to understand how Spark's internal scheduler works in context of actions, tasks and job
I find official documentation quite thorough and covering all your questions. However, one might find it hard to digest from the first time.
Let us put some definitions and rough analogues before we delve into details. application is what creates SparkContext sc and may be referred to as something you deploy with spark-submit. job is an action in spark definition of transformation and action meaning anything like count, collect etc.
There are two main and in some sense separate topics: Scheduling Across applications and Scheduling Within application. The former relates more to Resource Managers including Spark Standalone FIFO only mode and also concept of static and dynamic allocation.
The later, Scheduling Within Spark application is the matter of your question, as I understood from your comment. Let me try to describe what happens there at some level of abstraction.
Suppose, you submitted your application and you have two jobs
sc.textFile("..").count() //job1
sc.textFile("..").collect() //job2
If this code happens to be executed in the same thread there is no much interesting happening here, job2 and all its tasks get resources only after job1 is done.
Now say you have the following
thread1 { job1 }
thread2 { job2 }
This is getting interesting. By default, within your application scheduler will use FIFO to allocate resources to all the tasks of whichever job happens to appear to scheduler as first. Tasks for the other job will get resources only when there are spare cores and no more pending tasks from more "prioritized" first job.
Now suppose you set spark.scheduler.mode=FAIR for your application. From now on each job has a notion of pool it belongs to. If you do nothing then for every job pool label is "default". To set the label for your job you can do the following
sc.setLocalProperty("spark.scheduler.pool", "pool1").textFile("").count() // job1
sc.setLocalProperty("spark.scheduler.pool", "pool2").textFile("").collect() // job2
One important note here is that setLocalProperty is effective per thread and also all spawned threads. What it means for us? Well if you are within the same thread it means nothing as jobs are executed one after another.
However, once you have the following
thread1 { job1 } // pool1
thread2 { job2 } // pool2
job1 and job2 become unrelated in the sense of resource allocation. In general, properly configuring each pool in fairscheduler file with minShare > 0 you can be sure that jobs from different pools will have resources to proceed.
However, you can go even further. By default, within each pool jobs are queued up in a FIFO manner and this situation is basically the same as in the scenario when we have had FIFO mode and jobs from different threads. To change that you you need to change the pool in the xml file to have <schedulingMode>FAIR</schedulingMode>.
Given all that, if you just set spark.scheduler.mode=FAIR and let all the jobs fall into the same "default" pool, this is roughly the same as if you would use default spark.scheduler.mode=FIFO and have your jobs be launched in different threads. If you still just want single "default" fair pool just change config for "default" pool in xml file to reflect that.
To leverage the mechanism of pools you need to define the concept of user which is the same as setting "spark.scheduler.pool" from a proper thread to a proper value. For example, if your application listens to JMS, then a message processor may set the pool label for each message processing job depending on its content.
Eventually, not sure if the number of words is less than in the official doc, but hopefully it helps is some way :)
By default spark works with FIFO scheduler where jobs are executed in FIFO manner.
But if you have your cluster on YARN, YARN has pluggable scheduler, it means in YARN you can scheduler of your choice. If you are using YARN distributed by CDH you will have FAIR scheduler by deafult but you can also go for Capacity scheduler.
If you are using YARN distributed by HDP you will have CAPACITY scheduler by default and you can move to FAIR if you need that.
How Scheduler works with spark?
I'm assuming that you have your spark cluster on YARN.
When you submit a job in spark, it first hits your resource manager. Now your resource manager is responsible for all the scheduling and allocating resources. So its basically same as that of submitting a job in Hadoop.
How scheduler works?
Fair scheduling is a method of assigning resources to jobs such that all jobs get, on average, an equal share of resources over time. When there is a single job running, that job uses the entire cluster. When other jobs are submitted, tasks slots that free up are assigned to the new jobs, so that each job gets roughly the same amount of CPU time(using preemption killing all over used tasks). Unlike the default Hadoop scheduler(FIFO), which forms a queue of jobs, this lets short jobs finish in reasonable time while not starving long jobs. It is also a reasonable way to share a cluster between a number of users. Finally, fair sharing can also work with job priorities - the priorities are used as weights to determine the fraction of total compute time that each job should get.
The CapacityScheduler is designed to allow sharing a large cluster while giving each organization a minimum capacity guarantee. The central idea is that the available resources in the Hadoop Map-Reduce cluster are partitioned among multiple organizations who collectively fund the cluster based on computing needs. There is an added benefit that an organization can access any excess capacity no being used by others. This provides elasticity for the organizations in a cost-effective manner.
Spark internally uses FIFO/FCFS job scheduler. But, when you talk about the tasks, it works in a Round Robin fashion. It will be clear if we concentrate on the below example:
Suppose, the first job in Spark's own queue doesn't require all the resources of the cluster to be utilized; so, immediately second job in the queue will also start getting executed. Now, both jobs are running simultaneously. Each job has few tasks to be executed in order to execute the whole job. Assume, the first job assigns 10 tasks and the second one assigns 8. Then, those 18 tasks will share the CPU cycles of the whole cluster in a preemptive manner. If you want to further drill down, lets start with executors.
There will be few executors in the cluster. Assume the number is 6. So, in an ideal condition, each executor will be assigned 3 tasks and those 3 tasks will get same CPU time of the executors(separate JVM).
This is how spark internally schedules the tasks.

Apache-Spark Internal Job Scheduling

I came across the feature in Spark where it allows you to schedule different tasks within a spark context.
I want to implement this feature in a program where I map my input RDD(from a text source) into a key value RDD [K,V] subsequently make a composite key valueRDD [(K1,K2),V] and a filtered RDD containing some specific values.
Further pipeline involves calling some statistical methods from MLlib on both the RDDs and a join operation followed by externalizing the result to disk.
I am trying to understand how will spark's internal fair scheduler handle these operations. I tried reading the job scheduling documentation but got more confused with the concept of pools, users and tasks.
What exactly are the pools, are they certain 'tasks' which can be grouped together or are they linux users pooled into a group
What are users in this context. Do they refer to threads? or is it something like SQL context queries ?
I guess it relates to how are tasks scheduled within a spark context. But reading the documentation makes it seem like we are dealing with multiple applications with different clients and user groups.
Can someone please clarify this?
All the pipelined procedure you described in Paragraph 2:
map -> map -> map -> filter
will be handled in a single stage, just like a map() in MapReduce if it is familiar to you. It's because there isn't a need for repartition or shuffle your data for your make no requirements on the correlation between records, spark would just chain as much transformation as possible into a same stage before create a new one, because it would be much lightweight. More informations on stage separation could be find in its paper: Resilient Distributed Datasets Section 5.1 Job Scheduling.
When the stage get executed, it would be one task set (same tasks running in different thread), and get scheduled simultaneously in spark's perspective.
And Fair scheduler is about to schedule unrelated task sets and not suitable here.

Select node in Quartz cluster to execute a job

I have some questions about Quartz clustering, specifically about how triggers fire / jobs execute within the cluster.
Does quartz give any preference to nodes when executing jobs? Such as always or never the node that executed the same job the last time, or is it simply whichever node that gets to the job first?
Is it possible to specify the node which should execute the job?
The answer to this will be something of a "it depends".
For quartz 1.x, the answer is that the execution of the job is always (only) on a more-or-less random node. Where "randomness" is really based on whichever node gets to it first. For "busy" schedulers (where there are always a lot of jobs to run) this ends up giving a pretty balanced load across the cluster nodes. For non-busy scheduler (only an occasional job to fire) it may sometimes look like a single node is firing all the jobs (because the scheduler looks for the next job to fire whenever a job execution completes - so the node just finishing an execution tends to find the next job to execute).
With quartz 2.0 (which is in beta) the answer is the same as above, for standard quartz. But the Terracotta folks have built an Enterprise Edition of their TerracottaJobStore which offers more complex clustering control - as you schedule jobs you can specify which nodes of the cluster are valid for the execution of the job, or you can specify node characteristics/requisites, such as "a node with at least 100 MB RAM available". This also works along with ehcache, such that you can specify the job to run "on the node where the data keyed by X is local".
I solved this question for my web application using Spring + AOP + memcached. My jobs do know from the data they traverse if the job has already been executed, so the only thing I need to avoid is two or more nodes running at the same time.
You can read it here:
http://blog.oio.de/2013/07/03/cluster-job-synchronization-with-spring-aop-and-memcached/