Identifying an Actor using an ActorSelection - scala

I'm writing an Actor that should watch another Actor; let's call the latter one the target. My Actor should stop itself once its target is stopped. For this target I only have an ActorSelection. To watch it, I obviously need an ActorRef, so I figured I should send the ActorSelection an Identify message; when it replies back with ActorIdentity I would have its ActorRef. So far so good, but I can't get it to work.
Here's the spec:
// Arrange
val probe = TestProbe()
val target = TestProbe().ref
val sut = system.actorOf(MyActor.props(system.actorSelection(target.path)), "watch-target")
probe watch sut
// Act
target ! PoisonPill
// Assert
probe.expectTerminated(sut)
And the implementation (an FSM, details skipped):
log.debug("Asking target selection {} to identify itself; messageId={}", selection.toString(), messageId)
selection ! Identify(messageId)
when(Waiting) {
case Event(ActorIdentity(`messageId`, Some(ref)), Queue(q)) =>
log.info("Received identity for remote target: {}", ref)
context.watch(ref)
goto(NextState) using TargetFound(ref)
case Event(ActorIdentity(`messageId`, None), Queue(q)) =>
log.error("Could not find requested target {}", selection.toString())
stop()
}
initialize()
Now, when I run my test, it is green because the system under test is indeed stopped. But the problem is it stops itself because it can't find its target using the aforementioned steps. The log file says:
Asking target selection ActorSelection[Anchor(akka://default/), Path(/system/testProbe-3)] to identify itself; messageId=871823258
Could not find requested target ActorSelection[Anchor(akka://default/), Path(/system/testProbe-3)]
Am I missing something obvious here? Maybe a TestProbe should not reveal its real identity? I even tried by instantiating a dummy Actor as target but the results are the same. Any clue?

Turns out the answer is actually very simple: the test runs so fast that before MyActor sends the Identify message to the selection, the Actor behind the selection has already received its PoisonPill and thus is killed.
Adding a little Thread.sleep() before sending that PoisonPill fixed the issue.

The target actor is getting terminated before the identify request is being made. This is because Akka only guarantees order when sending messages between a given pair of actors.
If you add a thread.sleep above the following line, the identify request should succeed.
Thread.sleep(100)
// Act
target ! PoisonPill
Note that there may be better ways to code the test - sleeping the thread is not ideal.
Your watching actor should also handle the Terminated message of the target actor, as described here.

Related

Akka Classic Ask pattern. How does it match asks with responses?

I'm a newbie with Akka Actors, and I am learning about the Ask pattern. I am looking at the following example from alvin alexander:
class TestActor extends Actor {
def receive = {
case AskNameMessage => // respond to the "ask" request
sender ! "Fred"
case _ => println("that was unexpected")
}
}
...
val myActor = system.actorOf(Props[TestActor], name = "myActor")
// (1) this is one way to "ask" another actor
implicit val timeout = Timeout(5 seconds)
val future = myActor ? AskNameMessage
val result = Await.result(future, timeout.duration).asInstanceOf[String]
println(result)
(Yes, I know that Await.result isn't generally the best practice, but this is just a simple example.)
So from what I can tell, the only thing you need to do to implement the "askee" actor to service an Ask operation is to send a message back to the "asker" via the Tell operator, and that will be turned into a future on the "asker" side as a response to the Ask. Seems simple enough.
My question is this:
When the response comes back, how does Akka know that this particular message is the response to a certain Ask message?
In the example above, the "Fred" message doesn't contain any specific routing information that specifies that it's the response to a particular Ask operation. Does it just assume that the next message that the asker receives from that askee is the answer to the Ask? If that's the case, then what if one actor sends multiple Ask operations to the same askee? Wouldn't the responses likely get jumbled, causing random responses to be mapped to the wrong Asks?
Or, what if the asker is also receiving other types of messages from the same askee actor that are unrelated to these Ask messages? Couldn't the Asks receive response messages of the wrong type?
Just to be clear, I'm asking about Akka Classic, not Typed.
For every Ask message sent to an actor, akka creates a proxy ActorRef whose sole responsibility is to process one single message. This temp "actor" is initialized with a promise, which it needs to complete on message processing.
The source code of it is found here
but the main details are
private[akka] final class PromiseActorRef private (
val provider: ActorRefProvider,
val result: Promise[Any],
....
val alreadyCompleted = !result.tryComplete(promiseResult)
Now, it should be clear that Ask pattern is backed by independent unique actor asker for every message sent to the receiver askee.
The askee does know actor reference of the sender, or asker, of every message received via method context.sender(). Thus, it just needs to use this ActorRef to send a response back to the asker.
Finally, this all avoids any race conditions given that an actor only processes a message at a time. Thus it excludes any possibility of retrieving a "wrong" asker via method context.sender().

How can I gather state information from a set of actors using only the actorSystem?

I'm creating an actor system, which has a list of actors representing some kind of session state.
These session are created by a factory actor (which might, in the future, get replaced by a router, if performance requires that - this should be transparent to the rest of the system, however).
Now I want to implement an operation where I get some state information from each of my currently existing session actors.
I have no explicit session list, as I want to rely on the actor system "owning" the sessions. I tried to use the actor system to look up the current session actors. The problem is that I did not find a "get all actor refs with this naming pattern" method. I tried to use the "/" operator on the system, followed by resolveOne - but got lost in a maze of future types.
The basic idea I had was:
- Send a message to all current session actors (as given to my by my ActorSystem).
- Wait for a response from them (preferably by using just the "ask" pattern - the method calling this broadcaster request/response is just a monitoring resp. debugging method, so blocking is no probleme here.
- And then collect the responses into a result.
After a death match against Scala's type system I had to give up for now.
Is there really no way of doing something like this?
If I understand the question correctly, then I can offer up a couple of ways you can accomplish this (though there are certainly others).
Option 1
In this approach, there will be an actor that is responsible for waking up periodically and sending a request to all session actors to get their current stats. That actor will use ActorSelection with a wildcard to accomplish that goal. A rough outline if the code for this approach is as follows:
case class SessionStats(foo:Int, bar:Int)
case object GetSessionStats
class SessionActor extends Actor{
def receive = {
case GetSessionStats =>
println(s"${self.path} received a request to get stats")
sender ! SessionStats(1, 2)
}
}
case object GatherStats
class SessionStatsGatherer extends Actor{
context.system.scheduler.schedule(5 seconds, 5 seconds, self, GatherStats)(context.dispatcher)
def receive = {
case GatherStats =>
println("Waking up to gether stats")
val sel = context.system.actorSelection("/user/session*")
sel ! GetSessionStats
case SessionStats(f, b) =>
println(s"got session stats from ${sender.path}, values are $f and $b")
}
}
Then you could test this code with the following:
val system = ActorSystem("test")
system.actorOf(Props[SessionActor], "session-1")
system.actorOf(Props[SessionActor], "session-2")
system.actorOf(Props[SessionStatsGatherer])
Thread.sleep(10000)
system.actorOf(Props[SessionActor], "session-3")
So with this approach, as long as we use a naming convention, we can use an actor selection with a wildcard to always find all of the session actors even though they are constantly coming (starting) and going (stopping).
Option 2
A somewhat similar approach, but in this one, we use a centralized actor to spawn the session actors and act as a supervisor to them. This central actor also contains the logic to periodically poll for stats, but since it's the parent, it does not need an ActorSelection and can instead just use its children list. That would look like this:
case object SpawnSession
class SessionsManager extends Actor{
context.system.scheduler.schedule(5 seconds, 5 seconds, self, GatherStats)(context.dispatcher)
var sessionCount = 1
def receive = {
case SpawnSession =>
val session = context.actorOf(Props[SessionActor], s"session-$sessionCount")
println(s"Spawned session: ${session.path}")
sessionCount += 1
sender ! session
case GatherStats =>
println("Waking up to get session stats")
context.children foreach (_ ! GetSessionStats)
case SessionStats(f, b) =>
println(s"got session stats from ${sender.path}, values are $f and $b")
}
}
And could be tested as follows:
val system = ActorSystem("test")
val manager = system.actorOf(Props[SessionsManager], "manager")
manager ! SpawnSession
manager ! SpawnSession
Thread.sleep(10000)
manager ! SpawnSession
Now, these examples are extremely trivialized, but hopefully they paint a picture for how you could go about solving this issue with either ActorSelection or a management/supervision dynamic. And a bonus is that ask is not needed in either and also no blocking.
There have been many additional changes in this project, so my answer/comments have been delayed quite a bit :-/
First, the session stats gathering should not be periodical, but on request. My original idea was to "mis-use" the actor system as my map of all existing session actors, so that I would not need a supervisor actor knowing all sessions.
This goal has shown to be elusive - session actors depend on shared state, so the session creator must watch sessions anyways.
This makes Option 2 the obvious answer here - the session creator has to watch all children anyways.
The most vexing hurdle with option 1 was "how to determine when all (current) answers are there" - I wanted the statistics request to take a snapshot of all currently existing actor names, query them, ignore failures (if a session dies before it can be queried, it can be ignored here) - the statistics request is only a debugging tool, i.e. something like a "best effort".
The actor selection api tangled me up in a thicket of futures (I am a Scala/Akka newbie), so I gave up on this route.
Option 2 is therefore better suited to my needs.

Scala how to use akka actors to handle a timing out operation efficiently

I am currently evaluating javascript scripts using Rhino in a restful service. I wish for there to be an evaluation time out.
I have created a mock example actor (using scala 2.10 akka actors).
case class Evaluate(expression: String)
class RhinoActor extends Actor {
override def preStart() = { println("Start context'"); super.preStart()}
def receive = {
case Evaluate(expression) ⇒ {
Thread.sleep(100)
sender ! "complete"
}
}
override def postStop() = { println("Stop context'"); super.postStop()}
}
Now I run use this actor as follows:
def run {
val t = System.currentTimeMillis()
val system = ActorSystem("MySystem")
val actor = system.actorOf(Props[RhinoActor])
implicit val timeout = Timeout(50 milliseconds)
val future = (actor ? Evaluate("10 + 50")).mapTo[String]
val result = Try(Await.result(future, Duration.Inf))
println(System.currentTimeMillis() - t)
println(result)
actor ! PoisonPill
system.shutdown()
}
Is it wise to use the ActorSystem in a closure like this which may have simultaneous requests on it?
Should I make the ActorSystem global, and will that be ok in this context?
Is there a more appropriate alternative approach?
EDIT: I think I need to use futures directly, but I will need the preStart and postStop. Currently investigating.
EDIT: Seems you don't get those hooks with futures.
I'll try and answer some of your questions for you.
First, an ActorSystem is a very heavy weight construct. You should not create one per request that needs an actor. You should create one globally and then use that single instance to spawn your actors (and you won't need system.shutdown() anymore in run). I believe this covers your first two questions.
Your approach of using an actor to execute javascript here seems sound to me. But instead of spinning up an actor per request, you might want to pool a bunch of the RhinoActors behind a Router, with each instance having it's own rhino engine that will be setup during preStart. Doing this will eliminate per request rhino initialization costs, speeding up your js evaluations. Just make sure you size your pool appropriately. Also, you won't need to be sending PoisonPill messages per request if you adopt this approach.
You also might want to look into the non-blocking callbacks onComplete, onSuccess and onFailure as opposed to using the blocking Await. These callbacks also respect timeouts and are preferable to blocking for higher throughput. As long as whatever is way way upstream waiting for this response can handle the asynchronicity (i.e. an async capable web request), then I suggest going this route.
The last thing to keep in mind is that even though code will return to the caller after the timeout if the actor has yet to respond, the actor still goes on processing that message (performing the evaluation). It does not stop and move onto the next message just because a caller timed out. Just wanted to make that clear in case it wasn't.
EDIT
In response to your comment about stopping a long execution there are some things related to Akka to consider first. You can call stop the actor, send a Kill or a PosionPill, but none of these will stop if from processing the message that it's currently processing. They just prevent it from receiving new messages. In your case, with Rhino, if infinite script execution is a possibility, then I suggest handling this within Rhino itself. I would dig into the answers on this post (Stopping the Rhino Engine in middle of execution) and setup your Rhino engine in the actor in such a way that it will stop itself if it has been executing for too long. That failure will kick out to the supervisor (if pooled) and cause that pooled instance to be restarted which will init a new Rhino in preStart. This might be the best approach for dealing with the possibility of long running scripts.

actor:possible to send and receive nested in a receive

When process a message, is it possible to send out an message to another actor and wait for that actor to reply, and consume the replied message and then continue, like the following, is it doable?
val lineMap=HashMap[String,Int]()
receive {
case bigTaskMap=>
for (line <-readSomeFile){
if(lineMap.get(line)==None){
anotherActor!line // that actor will reply a hashmap which contain the key for line
receive {
case x:HashMap => lineMap=x
}
}
lineMap.get(line) // use that value to do further work
}
}
This answer is for Akka (old Scala actors are deprecated in Scala 2.10).
Yes. You can use ask to get a future (rather than creating a fully-fledged actor yourself) and then call onComplete on the Future returned to set an action which will be executed when the Future's value (or an error) becomes available. Don't worry about how quickly the Future might yield a value - it doesn't matter, because the onComplete action will be executed even if the Future is already available when onComplete is called!
However, be very careful: you should not directly access any of the state (i.e. the variables) in the containing actor in your action(s), because the onComplete action(s) will not run in the same execution context as the actor (i.e. they could be running at the same time as the original actor is processing a message). Instead, send further messages back to the original actor, or forward them on.
In fact, in some cases you may find the simplest thing to do is simply to send a message, and let the original actor handle the reply. become and unbecome may help here. However, again, be careful if using become, that in the actor's new behaviour, it doesn't drop "ordinary" messages that should be handled in the ordinary way.

Easiest way to do idle processing in a Scala Actor?

I have a scala actor that does some work whenever a client requests it. When, and only when no client is active, I would like the Actor to do some background processing.
What is the easiest way to do this? I can think of two approaches:
Spawn a new thread that times out and wakes up the actor periodically. A straight forward approach, but I would like to avoid creating another thread (to avoid the extra code, complexity and overhead).
The Actor class has a reactWithin method, which could be used to time out from the actor itself. But the documentation says the method doesn't return. So, I am not sure how to use it.
Edit; a clarification:
Assume that the background task can be broken down into smaller units that can be independently processed.
Ok, I see I need to put my 2 cents. From the author's answer I guess the "priority receive" technique is exactly what is needed here. It is possible to find discussion in "Erlang: priority receive question here at SO". The idea is to accept high priority messages first and to accept other messages only in absence of high-priority ones.
As Scala actors are very similar to Erlang, a trivial code to implement this would look like this:
def act = loop {
reactWithin(0) {
case msg: HighPriorityMessage => // process msg
case TIMEOUT =>
react {
case msg: HighPriorityMessage => // process msg
case msg: LowPriorityMessage => // process msg
}
}
}
This works as follows. An actor has a mailbox (queue) with messages. The receive (or receiveWithin) argument is a partial function and Actor library looks for a message in a mailbox which can be applied to this partial function. In our case it would be an object of HighPriorityMessage only. So, if Actor library finds such a message, it applies our partial function and we are processing a message of high priority. Otherwise, reactWithin with timeout 0 calls our partial function with argument TIMEOUT and we immediately try to process any possible message from the queue (as it waits for a message we cannot exclude a possiblity to get HighPriorityMessage).
It sounds like the problem you describe is not well suited to the actor sub-system. An Actor is designed to sequentially process its message queue:
What should happen if the actor is performing the background work and a new task arrives?
An actor can only find out about this is it is continuously checking its mailbox as it performs the background task. How would you implement this (i.e. how would you code the background tasks as a unit of work so that the actor could keep interrupting and checking the mailbox)?
What should happen if the actor has many background tasks in its mailbox in front of the main task?
Do these background tasks get thrown away, or sent to another actor? If the latter, how can you prevent CPU time being given to that actor to perform the tasks?
All in all, it sounds much more like you need to explore some grid-style software that can run in the background (like Data Synapse)!
Just after asking this question I tried out some completely whacky code and it seems to work fine. I am not sure though if there is a gotcha in it.
import scala.actors._
object Idling
object Processor extends Actor {
start
import Actor._
def act() = {
loop {
// here lie dragons >>>>>
if (mailboxSize == 0) this ! Idling
// <<<<<<
react {
case msg:NormalMsg => {
// do the normal work
reply(answer)
}
case Idling=> {
// do the idle work in chunks
}
case msg => println("Rcvd unknown message:" + msg)
}
}
}
}
Explanation
Any code inside the argument of loop but before the call to react seems to get called when the Actor is about to wait for a message. I am sending a Idling message to self here. In the handler for this message I ensure that the mailbox-size is 0, before doing the processing.