CQRS, Event sourcing and ids of created records - cqrs

Just started with CQRS and Event sourcing. Its a general novice question, for those who worked with CQRS.
Say, we have an event "userRegistration", where we should create Id for this created user? Should we write this Id to event data? How it is usually done when modeling CQRS?

Yes, you will normally want to have the id in the event data. Handlers that listen for UserRegistered events are likely to need to know which User you are eventing about.
Any sufficiently unique method of id generation will do. But you get great benefit from methods where the id generation is deterministic; it gives your system another way to recognize duplicated messages
Using a named UUID is a possible answer here, deterministic, but with a sufficiently minuscule collision frequency that you are unlikely to run into problems.
For instance, if the RegisterUser command has a unique identifier (useful, because it gives you another way to recognize duplicates), then you can use that identifier to deterministically generate a new identifier for the User.

Related

Designing event-based architecture for the customer service

Being a developer with solid experience, i am only entering the world of microservices and event-driven architecture. Things like loose coupling, independent scalability and proper implementation of asynchronous business processes is something that i feel should get simplified as compared with traditional monolith approach. So giving it a try, making a simple PoC for myself.
I am considering making a simple application where user can register, login and change the customer details. However, i want to react on certain events asynchronously:
customer logs in - we send them an email, if the IP address used is new to the system.
customer changes their name, we send them an email notifying of the change.
The idea is to make a separate application that reacts on "CustomerLoggedIn", "CustomerChangeName" events.
Here i can think of three approaches, how to implement this simple functionality, with each of them having some drawbacks. So, when a customer submits their name change:
Store change name Changed name is stored in the DB + an event is sent to Kafkas when the DB transaction is completed. One of the big problems that arise here is that if a customer had 2 tabs open and almost simultaneously submits a change from initial name "Bob" to "Alice" in one tab and from "Bob" to "Jim" in another one, on a database level one of the updates overwrites the other, which is ok, however we cannot guarantee the order of the events to be the same. We can use some checks to ensure that DB update is only done when "the last version" has been seen, thus preventing the second update at all, so only one event will be emitted. But in general case, this pattern will not allow us to preserve the same order of events in the DB as in Kafka, unless we do DB change + Kafka event sending in one distributed transaction, which is anti-pattern afaik.
Change the name in the DB, and use Debezium or similar DB CDC to capture the event and stream it. Here we get a single event source, so ordering problem is solved, however what bothers me is that i lose the ability to enrich the events with business information. Another related drawback is that CDC will stream all the updates in the "customer" table regardless of the business meaning of the event. So, in this case, i will probably need to build a Kafka Streams application to convert the DB CDC events to business events and decouple the DB structure from event structure. The potential benefit of this approach is that i will be able to capture "direct" DB changes in the same manner as those originated in the application.
Emit event from the application, without storing it in the DB. One of the subscribers might to the DB persistence, another will do email sending, etc. The biggest problem i see here is - what do i return to the client? I cannot say "Ok, your name is changed", it's more like "Ok, you request has been recorded and will be processed". In case if the customer quickly hits refresh - he expects to see his new name, as we don't want to explain to the customers what's eventual consistency, do we? Also the order of processing the same event by "email sender" and "db updater" is not guaranteed, so i can send an email before the change is persisted.
I am looking for advices regarding any of these three approaches (and maybe some others i am missing), maybe the usecases when one can be preferrable over others?
It sounds to me like you want event sourcing. In event sourcing, all you need to store is the event: the current state of a customer is derived from replaying the events (either from the beginning of time, or since a snapshot: the snapshot is just an optional optimization). Some other process (there are a few ways to go about this) can then project the events to Kafka for consumption by interested parties. Since every event has a sequence number, you can use the sequence number to prevent concurrent modification (alternatively, the more actor modely event-sourcing implementations can use techniques like cluster sharding in Akka to achieve the same ends).
Doing this, you can have a "write-side" which processes the updates in a strongly consistent manner and can respond to queries which only involve a single customer having seen every update to that point (the consistency boundary basically makes customer in this case an aggregate in domain-driven-design terms). "Read-sides" consuming events are eventually consistent: the latencies are typically fairly short: in this case your services sending emails are read-sides (as would be a hypothetical panel showing names of all customers), but the customer's view of their own data could be served by the write-side.
(The separation into read-sides and write-side (the pluralization is significant) is Command Query Responsibility Segregation, which sometimes gets interpreted as "reads can only be served by a read-side". This is not totally accurate: for one thing a write-side's model needs to be read in order for the write-side to perform its task of validating commands and synchronizing updates, so nearly any CQRS-using project violates that interpretation. CQRS should instead be interpreted as "serve reads from the model that makes the most sense and avoid overcomplicating a model (including that model in the write-side) to support a new read".)
I think I qualify to answer this, having extensively used debezium for simplifying the architecture.
I would prefer Option 2:
Every transaction always results in an event emitted in correct order
Option 1/3 has a corner case, what if transaction succeeds, but application fails to emit the event?
To your point:
Another related drawback is that CDC will stream all the updates in
the "customer" table regardless of the business meaning of the event.
So, in this case, i will probably need to build a Kafka Streams
application to convert the DB CDC events to business events and
decouple the DB structure from event structure.
I really dont think that is a roadblock. The benefit you get is potentially other usecases may crop up where another consumer to this topic may want to read other columns of the table.
Option 1 and 3 are only going to tie this to your core application logic, and that is not doing any favor from simplifying PoV. With option 2, with zero code changes to core application APIs, a developer can independently work on the events, with no need to understand that core logic.

How to store sagas’ data?

From what I read aggregates must only contain properties which are used to protect their invariants.
I also read sagas can be aggregates which makes sense to me.
Now I modeled a registration process using a saga: on RegistrationStarted event it sends a ReserveEmail command which will trigger an EmailReserved or EmailReservationFailed given if the email is free or not. A listener will then either send a validation link or a message telling an account already exists.
I would like to use data from the RegistrationStarted event in this listener (say the IP and user-agent). How should I do it?
Storing these data in the saga? But they’re not used to protect invariants.
Pushing them through ReserveEmail command and the resulting event? Sounds tedious.
Project the saga to the read model? What about eventual consistency?
Another way?
Rinat Abdullin wrote a good overview of sagas / process managers.
The usual answer is that the saga has copies of the events that it cares about, and uses the information in those events to compute the command messages to send.
List[Command] processManager(List[Event] events)
Pushing them through ReserveEmail command and the resulting event?
Yes, that's the usual approach; we get a list [RegistrationStarted], and we use that to calculate the result [ReserveEmail]. Later on, we'll get [RegistrationStarted, EmailReserved], and we can use that to compute the next set of commands (if any).
Sounds tedious.
The data has to travel between the two capabilities somehow. So you are either copying the data from one message to another, or you are copying a correlation identifier from one message to another and then allowing the consumer to decide how to use the correlation identifier to fetch a copy of the data.
Storing these data in the saga? But they’re not used to protect invariants.
You are typically going to be storing events in the sagas (to keep track of what has happened). That gives you a copy of the data provided in the event. You don't have an invariant to protect because you are just caching a copy of a decision made somewhere else. You won't usually have the process manager running queries to collect additional data.
What about eventual consistency?
By their nature, sagas are always going to be "eventually consistent"; the "state" of an instance of a saga is just cached copies of data controlled elsewhere. The data is probably nanoseconds old by the time the saga sees it, there's no point in pretending that the data is "now".
If I understand correctly I could model my saga as a Registration aggregate storing all the events whose correlation identifier is its own identifier?
Udi Dahan, writing about CQRS:
Here’s the strongest indication I can give you to know that you’re doing CQRS correctly: Your aggregate roots are sagas.

EventStore: learning how to use

I'm trying to learn EventStore, I like the concept but when I try to apply in practice I'm getting stuck in same point.
Let's see the code:
foreach (var k in stream.CommittedEvents)
{
//handling events
}
Two question about that:
When an app start ups after some maintenance, how do we bookmark in a
safe way what events start to read? Is there a pattern to use?
as soon the events are all consumed, the cycle ends... what about the message arriving run time? I would expect the call blocking until some new message arrive ( of course need to be handled in a thread ) or having something like BeginRead EndRead.
Do I have to bind an ESB to handle run time event or does the EventSore provides some facility to do this?
I try to better explain with an example
Suppose the aggregate is a financial portfolio, and the application is an application showing that portfolio to a trader. Suppose the trader connect to the web app and he looks at his own portfolio. The current state will be the whole history, so I have to read potentially a lot of records to reproduce the status. I guess this could be done by a so called snapshot, but who's responsible for creating it? When one should choose to create an aggregate? How can one guess a snapshot for an aggregate exists ?
For the runtime part: as soon the user look at the reconstructed portfolio state, the real time part begin to run. The user can place an order and a new position can be created by succesfully execute that order in the market. How is the portfolio updated by the infrastructure? I would expect, but maybe I'm completely wrong, having the same event stream being the source of that new event new long position, otherwise I have two path handling the state of the same aggregate. I would like to know if this is how the strategy is supposed to work, even if I feel a little tricky having the two state agents, that can possibly overlap.
Just to clarify how I fear the overlapping:
I know events has to be idempotent, so I know it must not be a
problem anyway,
But let's consider the following:
I subscribe an event bus before streaming the event to update the state of the portfolio. some "open position event" appears on the bus: I must handle them, but maybe the portfolio is not in the correct state to handle it since is not yet actualized. Even if I'm able to handle such events I will find them again when I read the stream.
More insidious: I open the stream and I read all events and I create a state. Then I subscribe to the bus: some message on the bus happen in the middle between the end of the steram reading and the beggining of the subscription: those events are missing and the aggregate is not in the correct state.
Please be patient all, my English is poor and the argument is tricky, hope I managed to share my doubt :)
The current state will be the whole history, so I have to read
potentially a lot of records to reproduce the status. I guess this
could be done by a so called snapshot, but who's responsible for
creating it?
In CQRS and event sourcing, queries are served by projections which are generated from events emitted by aggregates. You don't use the aggregate instance as reconstituted from the event store to display information.
The term snapshot refers specifically to an optimization of the event store which allows rebuilding the aggregate without replaying all of the events.
Projections are essentially event handlers which maintain a denormalized view of aggregates. Events emitted from aggregates are published, possibly out of band, and the projection subscribes to and handles those events. A projection can combine multiple aggregates if a requirement exists to display summary information, for instance. In case of a trading application, each view will typically contain data from various aggregates. Projections are designed in a consumer-driven way - application requirements determine the different views of the underlying data that are needed.
With this type of workflow you have to embrace eventual consistency throughout your application. For instance, if an end user is viewing their portfolio and initiating new trades, the UI has to subscribe to updates to reflect updated projections in an asynchronous manner.
Take a look at here for an overview of CQRS and event sourcing.

CQRS events do not contain details needed for updating read model

There is one thing about CQRS I do not get: How to update the read model when the raised event does not contain the details needed for updating the read model.
Unfortunately, this is a quite common scenario.
Example: I add a user to a group, so I send a addUserToGroup(userId, groupId) command. This is received, handled by the command handler, the userAddedToGroup event is created, stored and published.
Now, an event handler receives this event and the both IDs. Now there shall be a view that lists all users with the names of the groups they're in. To update the read model for that view, we do need the user id (which we have) and the group name (which we don't have, we only have its id).
So the question is: How do I handle this scenario?
Currently, four options come to my mind, all with their specific disadvantages:
The read model asks the domain. => Forbidden, and not even possible, as the domain only has behavior, no (public) state.
The read model reads the group name from another table in the read model. => Works, but what if there is no matching table?
Add the neccessary data to the event. => Does not work, as this means that I had to update all previous events as well, and I cannot foresee which data I may need one day.
Do not handle the event via a "usual" event handler, but start an ETL process in the background that deals with the event store, creates the neccessary data and writes the read model. => Works, but to me this seems a little bit of way too much overhead for such a simple scenario.
So, the question is: How do I deal with this scenario correctly?
There are two common solutions.
1) "Event Enrichment" is where you indeed put information on the event that reflects the information you are mentioning, e.g. the group name. Doing this is somewhere between modeling your domain properly and cheating. If you know, for instance, that group names change, emitting the name at the moment of the change is not a bad idea. Imagine when you create a line item on a quote or invoice, you want to emit the price of the good sold on the invoice created event. This is because you must honor that price, even if it changes later.
2) Project several streams at once. Write a projector which watches information from the various streams and joins them together. You might watch user and group events as well as your user added to group event. Depending on the ordering of events in your system, you may know that a user is in a group before you know the name of the group, but you should know the general properties of your event store before you get going.
Events don't necessarily represent a one-to-one mapping of the commands that have initiated the process in the first place. For instance, if you have a command:
SubmitPurchaseOrder
Shopping Cart Id
Shipping Address
Billing Address
The resulting event might look like the following:
PurchaseOrderSubmitted
Items (Id, Name, Amount, Price)
Shipping Address
Shipping Provider
Our Shipping Cost
Shipping Cost billed to Customer
Billing Address
VAT %
VAT Amount
First Time Customer
...
Usually the information is available to the domain model (either by being provided by the command or as being known internal state of the concerned aggregate or by being calculated as part of processing.)
Additionally the event can be enriched by querying the read model or even a different BC (e.g. to retrieve the actual VAT % depending on state) during processing.
You're correctly assuming that events can (and probably will) change over time. This basically doesn't matter at all if you employ versioning: Add the new event (e.g. SubmitPurchaseOrderV2) and add an appropriate event handler to all the classes that are supposed to consume it. No need to change the old event, it can still be consumed since you don't modify the interface, you extend it. This basically comes down to a very good example of the Open/Closed Principle in practice.
Option 2 would be fine, your question about "what about the mismatching in the groups' name read-model table" wouldn´t apply. no data should be deleted, should invalidated when a previous event (say delete group) was emmited. In the end the row in the groups table is there effectively and you can read the group name without problem at all. The only apparent problem could be speed inconsistency, but thats another issue, events should be orderly processed no matter speed they are being processed.

Recreate a graph that change in time

I have an entity in my domain that represent a city electrical network. Actually my model is an entity with a List that contains breakers, transformers, lines.
The network change every time a breaker is opened/closed, user can change connections etc...
In all examples of CQRS the EventStore is queried with Version and aggregateId.
Do you think I have to implement events only for the "network" aggregate or also for every "Connectable" item?
In this case when I have to replay all events to get the "actual" status (based on a date) I can have near 10000-20000 events to process.
An Event modify one property or I need an Event that modify an object (containing all properties of the object)?
Theres always an exception to the rule but I think you need to have an event for every command handled in your domain. You can get around the problem of processing so many events by making use of Snapshots.
http://thinkbeforecoding.com/post/2010/02/25/Event-Sourcing-and-CQRS-Snapshots
I assume you mean currently your "connectable items" are part of the "network" aggregate and you are asking if they should be their own aggregate? That really depends on the nature of your system and problem and is more of a DDD issue than simple a CQRS one. However if the nature of your changes is typically to operate on the items independently of one another then then should probably be aggregate roots themselves. Regardless in order to answer that question we would need to know much more about the system you are modeling.
As for the challenge of replaying thousands of events, you certainly do not have to replay all your events for each command. Sure snapshotting is an option, but even better is caching the aggregate root objects in memory after they are first loaded to ensure that you do not have to source from events with each command (unless the system crashes, in which case you can rely on snapshots for quicker recovery though you may not need them with caching since you only pay the penalty of loading once).
Now if you are distributing this system across multiple hosts or threads there are some other issues to consider but I think that discussion is best left for another question or the forums.
Finally you asked (I think) can an event modify more than one property of the state of an object? Yes if that is what makes sense based on what that event represents. The idea of an event is simply that it represents a state change in the aggregate, however these events should also represent concepts that make sense to the business.
I hope that helps.