How do I declare, create, and use method pointers in Swift? - swift

I'm not talking about pointers to C functions, but to a method within a Swift type.
struct Test: GeneratorType {
var methodPointer: mutating () -> Bool? // Non-working guess
var which: Bool
init() {
which = false
methodPointer = which ? &testMethod1 : &testMethod2 // Also non-working guess
}
//...
}
The compiler says "mutating" isn't legal as part of a function declaration. (Actually, it just suggests a semi-colon there.) And for the pointer initialization (after I remove mutating), the compiler thinks I'm trying to call the functions and use their results instead. I want to use the methods as objects in-and-of themselves here, not as a function call. Later on I want to use the pointed-to method within next; without figuring this out, I'll have to resort to an enumeration flag and manually choosing which method to call within next.
I hope there's some part of closure mechanics that allows this. Maybe something like this page, which describes functions returning functions. But none of the examples I've seen mention mutating methods.

See if this helps you.
class Something {
var f: ( () -> Int )?
let f1 = { () -> Int in /* do some action here */ return 1}
let f2 = { () -> Int in /* do some action here */ return 2}
func ff(which: Bool) {
f = which ? f1 : f2
}
func act() {
if let f = f {
f()
}
}
}

Here is how I do it -
class FcnArgs { //#goal pass a fcn as arg
class func demo() {
let fPtr = funcToPointTo; //#type '((Int)->String)'
print(fPtr(4));
}
class func funcToPointTo(_ i : Int) -> String {
print("I Was passed \(i)");
return "I was returned";
}
}
FcnArgs.demo() output:
I Was passed 4
I was returned

Related

Using generic methods in protocols Swift

I believe I have some misunderstanding of how generics work. I have the protocol:
protocol CommandProtocol {
func execute<T>() -> T
func unExecute<T>() -> T
}
And a class that conforms to it:
class CalculatorCommand: CommandProtocol {
...
func execute<String>() -> String {
return calculator.performOperation(operator: `operator`, with: operand) as! String
}
func unExecute<Double>() -> Double {
return calculator.performOperation(operator: undo(operator: `operator`), with: operand) as! Double
}
...
}
The calculator.performOperation() method actually returns Double, but here I just try to play with generics so I replace return type from Double to String.
After that, I have a class which invokes these methods:
class Sender {
...
// MARK: - Public methods
func undo() -> Double {
if current > 0 {
current -= 1
let command = commands[current]
return command.unExecute()
}
return 0
}
func redo() -> Double? {
if current < commands.count {
let command = commands[current]
current += 1
let value: Double = command.execute()
print(type(of: value))
return command.execute()
}
return nil
}
...
}
In the undo() method everything works as expected (one thing that I did not understand fully is how Swift really knows whether the unExecute value will return Double or not, or compiler infers it based on the undo() return type?)
But in the redo() method, I am calling the execute() method which returns String, but the method expects Double, so I thought that my program would crash, but not, it works totally fine as if execute() method returns Double.
Please, could someone explain to me what exactly happens under the cover of this code? Thank you in advance.
You are correct that you misunderstand generics. First, let's look at this protocol:
protocol CommandProtocol {
func execute<T>() -> T
func unExecute<T>() -> T
}
This says "no matter what type the caller requests, this function will return that type." That's impossible to successfully implement (by "successfully" I mean "correctly returns a value in all cases without crashing"). According this protocol, I'm allowed to write the following code:
func run(command: CommandProtocol) -> MyCustomType {
let result: MyCustomType = command.execute()
return result
}
There's no way to write an execute that will actually do that, no matter what MyCustomType is.
Your confusion is compounded by a subtle syntax mistake:
func execute<String>() -> String {
This does not mean "T = String," which is what I think you expect it to mean. It creates a type variable called String (that has nothing to do with Swift's String type), and it promises to return it. when you later write as! String, that means "if this values isn't compatible with the type requested (not "a string" but whatever was requested by the caller), then crash.
The tool that behaves closer to what you want here is an associated type. You meant to write this:
protocol CommandProtocol {
associatedType T
func execute() -> T
func unExecute() -> T
}
But this almost certainly won't do what you want. For example, with that, it's impossible to have an array of commands.
Instead what you probably want is a struct:
struct Command {
let execute: () -> Void
let undo: () -> Void
}
You then make Commands by passing closures that do what you want:
let command = Command(execute: { self.value += 1 },
undo: { self.value -= 1 })
Alternately, since this is a calculator, you could do it this way:
struct Command {
let execute: (Double) -> Double
let undo: (Double) -> Double
}
let command = Command(execute: { $0 + 1 }, undo: { $0 - 1 })
Then your caller would look like:
value = command.execute(value)
value = command.undo(value)
You think this returns a Swift.Double, but no. This code is no different than using T instead of Double. Swift does not require the names of generic placeholders to match what you put in a protocol.
func unExecute<Double>() -> Double {
return calculator.performOperation(operator: undo(operator: `operator`), with: operand) as! Double
}
You're not actually looking for generic methods. You want this, instead.
protocol CommandProtocol {
associatedtype ExecuteValue
associatedtype UnExecuteValue
func execute() -> ExecuteValue
func unExecute() -> UnExecuteValue
}

Swift function can be called only once

What is the simplest way to write a piece of code that can be executed only once?
I know a way but has a problem.
first, I write a Boolean variable that has negative value but can be set to positive and cannot change after that
var hasTheFunctionCalled : Bool = false {
didSet{
hasTheFunctionCalled = true
}
}
and then write the function and the code inside it:
func theFunction(){
if !hasTheFunctionCalled{
//do the thing
}
hasTheFunctionCalled = true
}
but the problem is that the variable can be changed from somewhere else in the scope and this solution doesn't really look so simple and concrete.
A simple solution is to take advantage of lazy variables in the following way:
// Declare your "once-only" closure like this
private lazy var myFunction: Void = {
// Do something once
}()
...
// Then to execute it, just call
_ = myFunction
This ensures that the code inside the myFunction closure is only executed the first time that the program runs _ = myFunction
Edit: Another approach is to use so called "dispatch once tokens". This comes from Objective-C and was available in Swift until Swift 3. It is still possible to make it work, however you will need to add a little bit of custom code. You can find more information on this post -> dispatch_once after the Swift 3 GCD API changes
Edit2: Should be _ = myFunction and not _ = myFunction(), as JohnMontgomery pointed out.
You might use a static bool inside a struct nested into the function itself doing so:
func theFunction(){
struct Holder { static var called = false }
if !Holder.called {
Holder.called = true
//do the thing
}
}
One possible technique is to put the code into the initializer of a static type property, which is guaranteed to be lazily initialized only once (even when accessed across multiple threads simultaneously):
func theFunction() {
struct Once {
static let once = Once()
init() {
print("This should be executed only once during the lifetime of the program")
}
}
_ = Once.once
}
(Compare Singleton in the "Using Swift with Cocoa and Objective-C" reference.)
Example:
print("Call #1")
theFunction()
print("Call #2")
theFunction()
print("Done")
Output:
Call #1
This should be executed only once during the lifetime of the program
Call #2
Done
You can do smth like:
class Once {
var already: Bool = false
func run(#noescape block: () -> Void) {
guard !already else { return }
block()
already = true
}
}
and than use it like
class ViewController: UIViewController {
let once = Once()
override func viewDidAppear(animated: Bool) {
super.viewDidAppear(animated)
once.run {
cameraMan.setup()
}
}
}
ref: https://dev.to/onmyway133/how-to-run-action-once-in-swift-3k7o
Depending on what you are doing inside your method : you may check if the end result has already been accomplished :
e.g. if you instantiate a class, check if it is different from nil
You can also use UserDefaults, and the knowledge that the default UserDefault Bool is false:
if !UserDefaults.standard.bool(forKey: "ExecuteOnce") {
func()
UserDefaults.standard.set(true, forKey: "ExecuteOnce")
}
This code will execute exactly once.

Using a Type Variable in a Generic

I have this question except for Swift. How do I use a Type variable in a generic?
I tried this:
func intType() -> Int.Type {
return Int.self
}
func test() {
var t = self.intType()
var arr = Array<t>() // Error: "'t' is not a type". Uh... yeah, it is.
}
This didn't work either:
var arr = Array<t.Type>() // Error: "'t' is not a type"
var arr = Array<t.self>() // Swift doesn't seem to even understand this syntax at all.
Is there a way to do this? I get the feeling that Swift just doesn't support it and is giving me somewhat ambiguous error messages.
Edit: Here's a more complex example where the problem can't be circumvented using a generic function header. Of course it doesn't make sense, but I have a sensible use for this kind of functionality somewhere in my code and would rather post a clean example instead of my actual code:
func someTypes() -> [Any.Type] {
var ret = [Any.Type]()
for (var i = 0; i<rand()%10; i++) {
if (rand()%2 == 0){ ret.append(Int.self) }
else {ret.append(String.self) }
}
return ret
}
func test() {
var ts = self.someTypes()
for t in ts {
var arr = Array<t>()
}
}
Swift's static typing means the type of a variable must be known at compile time.
In the context of a generic function func foo<T>() { ... }, T looks like a variable, but its type is actually known at compile time based on where the function is called from. The behavior of Array<T>() depends on T, but this information is known at compile time.
When using protocols, Swift employs dynamic dispatch, so you can write Array<MyProtocol>(), and the array simply stores references to things which implement MyProtocol — so when you get something out of the array, you have access to all functions/variables/typealiases required by MyProtocol.
But if t is actually a variable of kind Any.Type, Array<t>() is meaningless since its type is actually not known at compile time. (Since Array is a generic struct, the compiler needs know which type to use as the generic parameter, but this is not possible.)
I would recommend watching some videos from WWDC this year:
Protocol-Oriented Programming in Swift
Building Better Apps with Value Types in Swift
I found this slide particularly helpful for understanding protocols and dynamic dispatch:
There is a way and it's called generics. You could do something like that.
class func foo() {
test(Int.self)
}
class func test<T>(t: T.Type) {
var arr = Array<T>()
}
You will need to hint the compiler at the type you want to specialize the function with, one way or another. Another way is with return param (discarded in that case):
class func foo() {
let _:Int = test()
}
class func test<T>() -> T {
var arr = Array<T>()
}
And using generics on a class (or struct) you don't need the extra param:
class Whatever<T> {
var array = [T]() // another way to init the array.
}
let we = Whatever<Int>()
jtbandes' answer - that you can't use your current approach because Swift is statically typed - is correct.
However, if you're willing to create a whitelist of allowable types in your array, for example in an enum, you can dynamically initialize different types at runtime.
First, create an enum of allowable types:
enum Types {
case Int
case String
}
Create an Example class. Implement your someTypes() function to use these enum values. (You could easily transform a JSON array of strings into an array of this enum.)
class Example {
func someTypes() -> [Types] {
var ret = [Types]()
for _ in 1...rand()%10 {
if (rand()%2 == 0){ ret.append(.Int) }
else {ret.append(.String) }
}
return ret
}
Now implement your test function, using switch to scope arr for each allowable type:
func test() {
let types = self.someTypes()
for type in types {
switch type {
case .Int:
var arr = [Int]()
arr += [4]
case .String:
var arr = [String]()
arr += ["hi"]
}
}
}
}
As you may know, you could alternatively declare arr as [Any] to mix types (the "heterogenous" case in jtbandes' answer):
var arr = [Any]()
for type in types {
switch type {
case .Int:
arr += [4]
case .String:
arr += ["hi"]
}
}
print(arr)
I would break it down with the things you already learned from the first answer. I took the liberty to refactor some code. Here it is:
func someTypes<T>(t: T.Type) -> [Any.Type] {
var ret = [Any.Type]()
for _ in 0..<rand()%10 {
if (rand()%2 == 0){ ret.append(T.self) }
else {
ret.append(String.self)
}
}
return ret
}
func makeArray<T>(t: T) -> [T] {
return [T]()
}
func test() {
let ts = someTypes(Int.self)
for t in ts {
print(t)
}
}
This is somewhat working but I believe the way of doing this is very unorthodox. Could you use reflection (mirroring) instead?
Its possible so long as you can provide "a hint" to the compiler about the type of... T. So in the example below one must use : String?.
func cast<T>(_ value: Any) -> T? {
return value as? T
}
let inputValue: Any = "this is a test"
let casted: String? = cast(inputValue)
print(casted) // Optional("this is a test")
print(type(of: casted)) // Optional<String>
Why Swift doesn't just allow us to let casted = cast<String>(inputValue) I'll never know.
One annoying scenerio is when your func has no return value. Then its not always straightford to provide the necessary "hint". Lets look at this example...
func asyncCast<T>(_ value: Any, completion: (T?) -> Void) {
completion(value as? T)
}
The following client code DOES NOT COMPILE. It gives a "Generic parameter 'T' could not be inferred" error.
let inputValue: Any = "this is a test"
asyncCast(inputValue) { casted in
print(casted)
print(type(of: casted))
}
But you can solve this by providing a "hint" to compiler as follows:
asyncCast(inputValue) { (casted: String?) in
print(casted) // Optional("this is a test")
print(type(of: casted)) // Optional<String>
}

Calling function in initializer : Swift

I want to call a function in initializer, but i couldn't do it
class someclass {
var a : Int
var b : Int
init() {
self.a = 5
self.b = 4
func printx () {
println("you called the function")
}
printx()
}
}
var ab = someclass()
Is it posible to do that something like ab.init().printx
And
Will this printx() function execute when i initialize with someclass()
For your questions: No - you can't reference your printx from outside of init and Yes - your printx will execute when init is called. In Swift 1.2:
20> class Bar {
21. var ping : Int
22. init () {
23. ping = 1
24. func bar () { println ("bar") }
25. bar()
26. }
27. }
28> Bar()
bar
$R4: Bar = {
ping = 1
}
Defining your printx in init is perfectly viable and you should demand that it works (and it does). Having lexically contained function definitions in Swift is critically important. Now, if the language could allow the function name to be recursively visible...
Maybe you would do something like this?
class someclass {
var a : Int
var b : Int
func printx () {
println("you called the function")
}
init() {
self.a = 5
self.b = 4
printx()
}
}
var ab = someclass()
ab.printx()
Consider you never call init() writing it but just with someClass()
This question simply demonstrates a lack of understanding when it comes to scope.
The function printx() is not a method on the class SomeClass, but it a function scoped within the particular init() method you've defined.
As written, printx() will execute (and will print) when you call the init() method:
See the box in the right pane at the top? That's showing us all of the console output from our playground, exactly as it would display if we ran this otherwise.
However, we cannot now call ab.printx() because as I stated earlier, printx() is not a member of the class SomeClass. If we want to call printx() on instances of SomeClass, we must then define it as an instance method of the class (and if we still want to call it in init, we can).

Assigning to a var defined in Protocol says that it can't assign to it

Here is a simple use case:
protocol Debuggable {
var _d: String -> () {
get set
}
}
class Debugger {
class func attach(instance: Debuggable) {
let d = Debugger()
instance._d = d.d // This doesn't work
}
func d(message: String) {
println(message)
}
}
Error message at compile time: Cannot assign to _d in instance, although my protocol defines the var with a getter and setter.
This is a good case of the compiler catching an error for you :)
instance may be a value type and therefore be copied in to this method. In that case, you will modify the copy and just throw it out. The quickest fix is to define it as an inout parameter:
class func attach(inout instance: Debuggable) {
let d = Debugger()
instance._d = d.d
}
I think it would be better to return the instance though:
class func attach(instance: Debuggable) -> Debuggable {
let d = Debugger()
var ret = instance
ret._d = d.d
return ret
}
I feel that inout is mostly in the language for backwards compatibility to Objective-C and C. Let the type determine if it should be copied instead of forcing it to be passed by reference. If something is defined as a value type, there is a good reason for it.